K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

undefined

Gọi chiềudài và chiều rộng lần lượt là a,b

CHu vi 300m nên a+b=300/2=150

Theo đề, ta có:

a+b=150 và (a-10)(b+20)=ab+1000

=>a+b=150 và 20a-10b=1200

=>a=90 và b=60

Gọi chiều dài HCN là x (x>0,m)

Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)

Theo bài ra ta có phương trình sau 

\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)

\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)

Tự thực hiện tiếp .... 

14 tháng 10 2023

loading...  loading...  

20 tháng 2 2019

Này cậu :)))))

Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m ) 

( 40 < x < 80 ; 0 < y < 40 )

Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )

Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\)  ( 2 )

Từ ( 1 ) và ( 2 ) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )

Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P

26 tháng 4 2020

Gọi chiều rộng HCN là x (đk: m; x > 0)

=> chiều dài HCN là 5x

Theo bài ra, ta có: (x + 2)(5x - 5) - 5x.x = 10

<=> 5x2 + 5x - 10 - 5x2 = 10

<=>5x = 20

<=> x = 4

Diện tích khu đất là : 4 . 20 = 80 (m2)

22 tháng 9

Gọi:

  • \(x\) là chiều dài ban đầu (m)
  • \(y\) là chiều rộng ban đầu (m)

Theo đề bài:

  1. Chu vi hình chữ nhật là 64m, tức:

\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)

  1. Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:

\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)

Mở rộng và đơn giản:

\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)


Hệ phương trình:

\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)


Giải hệ:

Từ phương trình thứ nhất:

\(y = 32 - x\)

Thay vào phương trình thứ hai:

\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)

Thay \(x = 18\) vào:

\(y = 32 - 18 = 14\)


Kết luận:

Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk

Nửa chu vi mảnh vườn là 64:2=32(m)

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)

(Điều kiện: x>y>0)

Nửa chu vi mảnh vườn là 32m nên x+y=32(1)

Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)

nên ta có: (x+2)(y+3)=xy+88

=>xy+3x+2y+6=xy+88

=>3x+2y=82(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)

=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)

Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)