K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

\(y=\frac{1-3x}{4}=-\frac{3}{4}x+\frac{1}{4};y=-\frac{1}{3}x-1\)

Phương trình hoành độ giao điểm của hai đường thẳng:

\(-\frac{3}{4}x+\frac{1}{4}=-\frac{1}{3}x-1\)

\(\Leftrightarrow\frac{5}{12}x=-\frac{5}{4}\)

\(\Leftrightarrow x=3\Rightarrow y=-2\)

\(\Rightarrow\) Tọa độ giao điểm \(\left(3;-2\right)\)

31 tháng 10 2020

neu khong tach quy dong luon duoc k

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

PT hoành độ giao điểm:

\(y=\frac{1-3x}{4}=-\left(\frac{x}{3}+1\right)\)

\(\Leftrightarrow 3(1-3x)=-4(x+3)\)

\(\Leftrightarrow x=3\)

\(\Rightarrow y=\frac{1-3x}{4}=\frac{1-3.3}{4}=-2\)

Vậy tọa độ giao điểm của 2 đường thẳng này là $(3;-2)$

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
NV
18 tháng 10 2020

Pt hoành độ giao điểm:

\(\frac{1-3x}{4}=-\left(\frac{x}{3}+1\right)\)

\(\Rightarrow x=3\)

Thay vào 1 trong 2 pt đường thẳng ta được \(y=-2\)

Vậy tọa độ giao điểm là \(\left(3;-2\right)\)

17 tháng 9 2019

Nguyễn Việt Lâm giúp mk vs. thanks bnn!!!!!

NV
17 tháng 9 2019

a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-9\)

\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)

Vậy pt vô nghiệm

b/ ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)

\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)

c/ ĐKXĐ: \(x\ne\pm4\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2+16=5x^2+2x\)

\(\Rightarrow x=8\)