\(y=\frac{1-3x}{4}\) và \(y=-\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

PT hoành độ giao điểm:

\(y=\frac{1-3x}{4}=-\left(\frac{x}{3}+1\right)\)

\(\Leftrightarrow 3(1-3x)=-4(x+3)\)

\(\Leftrightarrow x=3\)

\(\Rightarrow y=\frac{1-3x}{4}=\frac{1-3.3}{4}=-2\)

Vậy tọa độ giao điểm của 2 đường thẳng này là $(3;-2)$

NV
18 tháng 10 2020

Pt hoành độ giao điểm:

\(\frac{1-3x}{4}=-\left(\frac{x}{3}+1\right)\)

\(\Rightarrow x=3\)

Thay vào 1 trong 2 pt đường thẳng ta được \(y=-2\)

Vậy tọa độ giao điểm là \(\left(3;-2\right)\)

12 tháng 10 2019

a) Hoành độ giao điểm của hai hàm số y = 3x-2 và y = 2x+3 là :

\(3x-2=2x+3\\ \Leftrightarrow x=5\)

Thay x=5 vào một trong hai hàm số ta được tung độ giao điểm của hai hàm số đã cho là y=13

Vậy toạ độ giao điểm của hai hàm số đã cho là (x;y)=(5;13)

b) Hoành độ giao điểm của hai hàm số y=\(\frac{1}{2}x-\frac{3}{2}\)và hàm số y=\(-\frac{1}{3}x+\frac{5}{3}\) là :

\(\frac{1}{2}x-\frac{3}{2}=-\frac{1}{3}x+\frac{5}{3}\\ \Leftrightarrow\frac{5}{6}x=\frac{19}{6}\\ \Leftrightarrow x=\frac{19}{5}\)

Thay \(x=\frac{19}{5}\)vào một trong hai hàm số đã cho ta có : \(y=\frac{2}{5}\)

Vậy toạ độ giao điểm của hai hàm số đã cho là \(\left(x;y\right)=\left(\frac{19}{5};\frac{2}{5}\right)\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

25 tháng 7 2016

Tìm tọa độ của (P) và (D) bằng phép tính

Xét phương trình hoành độ giao điểm của (D) và (P)

\(\frac{-x^2}{4}\) = \(\frac{x}{2}\) - 2 \(\Leftrightarrow\) x2 + 2x - 8 = 0

\(\Delta\) ' = 9

Phương trình trên có 2 nghiệm phân biệt: x1 = 2 ; x2 = -4

Với x1 = 2 ta có y1 = -1, A (2 ; -1)

Với x2 = -4 ta có y2 = -4, B (-4 ; -4)

Vậy (D) cắt (P) tại 2 điểm phân biệt A (2 ; -1) ; B (-4 ; -4)

hệ phương trình 1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\) 3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\) 4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\) 5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\) 6 ,...
Đọc tiếp

hệ phương trình

1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)

4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)

5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)

8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)

10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)

0
\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\) \(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\) Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y) \(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\) Theo tính chất đường phân giác ta...
Đọc tiếp

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\)

Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y)

\(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\)

Theo tính chất đường phân giác ta có:

\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{3}{4}\)

\(\Rightarrow\overrightarrow{DB}=-\frac{3}{4}\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{4}-x=-\frac{3}{4}\left(2-x\right)\\-y=-\frac{3}{4}\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Rightarrow D\left(1;0\right)\)

Gọi BJ là đường phân giác trong góc B với J thược AD. Gọi toạ độ điểm J là J(x;y).

\(\overrightarrow{BA}=\left(-\frac{9}{4};3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{BD}=\left(\frac{3}{4};0\right)\Rightarrow BD=\frac{3}{4}\)

Theo tính chất đường phân giác góc B ta có:

\(\frac{JA}{JD}=\frac{BA}{BD}\)

\(\Rightarrow\)\(\frac{\overrightarrow{JA}}{\overrightarrow{JD}}=-5\)

\(\Rightarrow\overrightarrow{JA}=-5\overrightarrow{JD}\)

\(\Rightarrow\left\{{}\begin{matrix}-2-x=-5\left(1-x\right)\\3-y=-5\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\end{matrix}\right.\)

\(J\left(\frac{1}{2};\frac{1}{2}\right)\)

Vì J là giao điểm của hai đường phân giác trong góc A và góc B nên J là tâm đường tròn nội tiếp tam giác ABC

0