Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A = \(1-\frac{1}{100}=\frac{99}{100}\)
\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=3.\left(1-\frac{1}{10}\right)\)
\(A=3.\frac{9}{10}=\frac{27}{10}\)
\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)
\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
= \(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{98}-\frac{1}{98}\right)-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
Vậy ...
B = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
= \(\frac{1}{2}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{8}-\frac{1}{8}\right)-...-\left(\frac{1}{17}-\frac{1}{17}\right)-\frac{1}{20}\)
= \(\frac{1}{2}-\frac{1}{20}\)
= \(\frac{9}{20}\)
Vậy B = 9/20
S=1.2+2.3+3.4+....+99.100
3S = 1.2.3 + 2.3.3 + 3.4.3+...... + 99.100.3
3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.....+ 99.100.(101-98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4+..... + 99.100.101 - 98.99.100
3S = 99.100.101
S = \(\frac{99.100.101}{3}=333300\)
A = 1.2+2.3+3.4+......+99.100
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Bài 1
a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Tk mình nha!!
Câu 2:
\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)
\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)
\(=\frac{3\cdot100}{2}\)
\(=\frac{300}{2}=150\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}\\ =\left(\frac{2}{1}-\frac{2}{2}\right)+\left(\frac{2}{2}-\frac{2}{3}\right)+...+\left(\frac{2}{5}-\frac{2}{6}\right)\\ =\frac{2}{1}+\left(\frac{2}{2}-\frac{2}{2}\right)+....+\left(\frac{2}{5}-\frac{2}{5}\right)-\frac{2}{6}\\ \)
\(=\frac{2}{1}-\frac{2}{6}\\ =\frac{10}{6}=\frac{5}{3}\)
Câu b và c tương tự như câu a
d) Số hạng thứ 225 của dãy là :
5+(225-1).5=1125
Tổng của dãy trên là :
(1125+5).225:2=127125
e) Số số hạng là :
(2016-2):2+1=1008 ( số hạng )
Tổng của dãy trên là :
(2016+2).1008:2=1017072
a)\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(=2.\left(1-\frac{1}{6}\right)\)
\(=2.\frac{5}{6}\)
\(=\frac{5}{3}\)
b)\(\frac{2}{1.3}+\frac{2}{5.3}+\frac{2}{5.7}+\frac{2}{9.7}+...+\frac{2}{2015.2017}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
c)\(\frac{12}{2.5}+\frac{12}{8.5}+\frac{12}{11.8}+\frac{12}{14.11}+\frac{12}{17.14}+\frac{12}{20.17}\)
\(=4.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=4.\frac{9}{20}\)
\(=\frac{9}{5}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{99.100}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}=\frac{99}{50}\)
=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
=\(2\left(1-\frac{1}{100}\right)\)
=\(2\cdot\frac{99}{100}=\frac{99}{50}\)
a) = 1-1/2+1/2-1/3+1/3-1/4
= 1-1/4=3/4
b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018
=1-1/2018=2017/2018
c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015
= 1/2-1/2015=2015/4030-2/4030=2013/4030
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)
\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}.\frac{2013}{4030}\)
\(=\frac{6039}{8060}\)
BÀI 1:
\(N=\frac{2}{2.5}+\frac{2}{5.8}+...+\frac{2}{17.20}\)
\(N=2.\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{17.20}\right)\)
\(N=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(N=2.\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(N=2.\frac{9}{20}\)
\(N=\frac{9}{10}\)
BÀI 2:
\(C=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3B=1.2\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3B=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)-\left(1.2.3+2.3.4+...+98.99.100\right)\)
\(3B=99.100.101\)
\(3B=999900\)
\(\Rightarrow B=999900:3\)
\(B=333300\)
CHÚC BN HỌC TỐT!!!!
Thanks CÔNG CHÚA ÔRI vì đã giúp mk