Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)
\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy:.............
Câu 2:
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)
\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)
\(=\frac{100}{2}=50\)
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :
\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)
Quy đồng tất cả 999 phân số này ta được:
\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)
Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)
\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)
Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.
\(\Rightarrow m⋮1999\)
a)
\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{50.51}\)
\(\Rightarrow A>\frac{1}{3^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{51}=\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)
Dễ thấy 1/9 > 1/51
=> 1/9 - 1/51 > 0
\(\Rightarrow a>\frac{1}{4}+\frac{1}{9}-\frac{1}{51}>\frac{1}{4}\)
=> A>1/4
a ) Co :
1/1.2 - 1/2.3 = 2/1.2.3
1/2.3 - 1/3.4 = 2/2.3.4
...
1/37.38 - 1/38.39 = 2/37.38.39
=> 2M = 2/1.2.3 + 2/2.3.4 + ... + 2/37.38.39
=> 2M = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/37.38 - 1/38.39
=> 2M = 1/2 - 1/1482
=> 2M = 370/741
=> M = 185/741
B ) A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^7
3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^7 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8 )
2A = 1 - 1/3^8
A = ( 1 - 1/3^8 ) / 2
= 1/2.(2/1.2.3+2/2.3.4+.....+2/50.51.52
=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+....+1/50.51-1/51.52
=1/2.(1/1.2-1/51.52)
=1/2.(1/2-1/2652)
=1/2.1325/2652
=1325/5304
A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/50.51-1/51.52
A=1/1.2-1/51.52
phần còn lại tự giải nhé
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)
Ủng hộ mk nha!!
Ta xét: \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}=\frac{2}{98.99.100}\)
Tổng quát (bạn nên thêm vào):
\(\frac{1}{n.n+1}-\frac{1}{\left(n+1\right).\left(n+2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)
Ta có:
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
Ta thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0;...\)
\(=>2A=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)
\(\Rightarrow A=\frac{4949}{9900}:2=\frac{4949}{19800}\)