Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
a) ( x - 1 )3 + 3x( x - 1 )2 + 3x2( x - 1 ) + x3
= [ ( x - 1 ) + x ) ]3 ( HĐT số 4 )
= [ x - 1 + x ]3
= [ 2x - 1 ]3
=> đpcm
b) ( x2 - 2xy )3 + 3( x2 - 2xy )y2 + 3( x2 - 2xy )y4 + y6
= [ ( x2 - 2xy ) + y2 ]3 ( HĐT số 4 )
= [ x2 - 2xy + y2 ]3
= [ ( x - y )2 ]3
= ( x - y )6
=> đpcm
Giải:
a) \(x^2-2xy+y^2+1>0\)
\(\Leftrightarrow\left(x-y\right)^2+1>0\) (luôn đúng)
Vậy ...
b) Ta có:
\(x\le x^2\)
\(\Leftrightarrow x-x^2\le0\)
\(\Leftrightarrow x-x^2-1\le-1\)
\(\Leftrightarrow x-x^2-1< 0\) (đpcm)
Vậy ...
a) Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1>0;\forall x,y\)
Vì: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0;\forall x,y\\1>0\end{matrix}\right.\)
b) Ta có: \(x-x^2-1=-\left(x^2-x+1\right)\)
...................................= \(-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
...................................= \(-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
...................................= \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0,\forall x\)
Vì: \(\left\{{}\begin{matrix}-\left(x-\dfrac{1}{2}\right)^2< 0,\forall x\\-\dfrac{3}{4}< 0\end{matrix}\right.\)
a, Ta có: 4x2-2x+1 = (x2 -2x+1)+ 3x2=(x-1)2 +3x2>0 (thay x=1 và x=0 thì biểu thức vãn lớn hơn 0)
b, x4-3x2+9=x4- 6x2 +32 +3x2=(x2-3)2 +3x2 >0
c, x2+y2-2x-2y+2xy+2=(x+y)2 -1 -2(x+y-1) +1 =(x+y -1)(x+y+1) - 2(x+y-1)+1=(x+y-1)(x+y+1-2) + 1=(x+y-1)2 +1 >0
d, 2(x2+3xy+3y2)=2x2+6xy+6y2=(x2+2xy+y2) +(x2+4xy+4y2)+y2=(x+y)2+(x+2y)2+y2>0
e, 2x2+y2+2x(y-1)+2= (x2+2xy+y2) +(x2-2x+1)+1=(x+y)2+(x-1)+1>0
nhớ bấm đúng cho mình nhé!
\(x^2+y^2-2xy+x-y+1\)\(\left(x-y\right)^2+x-y+1\)
\(\left(x-y\right)=t\Rightarrow t^2-t+1=t^2-2.\frac{1}{2}t+\frac{1}{4}+\frac{3}{4}=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>đpcm
\(x^2+y^2-2xy+x-y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(x-y\right)+1\)
\(=\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x-y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x;y\)
P.s: cách này dễ hiểu hơn cách của Nguyễn Hưng Phát
1/ 20092 - 81 = 20092 - 92 = (2009 - 9) (2009 + 9) = 2000 * 2018 = 4036000
2/ có: (x - y)2 = x2 + y2 - 2xy \(\ge\)0
<=> x2 + y2 \(\ge\)2xy (đpcm)
thank u ban nha