Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ne\pm1;x\ne2\\ b,A=\dfrac{\dfrac{0+1}{0-1}-\dfrac{0-1}{0+1}}{1+\dfrac{0+1}{0-2}}=\dfrac{-1+1}{1-\dfrac{1}{2}}=0\\ c,A=0\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=0\\ \Leftrightarrow4x=0\Leftrightarrow x=0\left(tm\right)\)
\(A=\dfrac{x^2+2x+1-x}{x^2+2x+1}=1-\dfrac{x}{\left(x+1\right)^2}\)
\(=\dfrac{1}{\left(x+1\right)^2}-\dfrac{1}{x+1}+1\)
\(=\left(\dfrac{1}{x+1}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu = xảy ra khi x=1
Bài 5
a) A = -x³ + 6x² - 12x + 8
= -x³ + 3.(-x)².2 - 3.x.2² + 2³
= (-x + 2)³
= (2 - x)³
Thay x = -28 vào A ta được:
A = [2 - (-28)]³
= 30³
= 27000
b) B = 8x³ + 12x² + 6x + 1
= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³
= (2x + 1)³
Thay x = 1/2 vào B ta được:
B = (2.1/2 + 1)³
= 2³
= 8
Bài 6
a) 11³ - 1 = 11³ - 1³
= (11 - 1)(11² + 11.1 + 1²)
= 10.(121 + 11 + 1)
= 10.133
= 1330
b) Đặt B = x³ - y³ = (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + 3xy)
= (x - y)[(x - y)² + 3xy]
Thay x - y = 6 và xy = 9 vào B ta được:
B = 6.(6² + 3.9)
= 6.(36 + 27)
= 6.63
= 378
Bài giải:
a) x2 + x+ tại x = 49,75
Ta có: x2 + x+ = x2 + 2 . x . + =
Với x = 49,75: = (49,75 + 0,25)2 = 502 = 2500
b) x2 – y2 – 2y – 1 tại x = 93 và y = 6
Ta có: x2 – y2 – 2y – 1 = x2 – (y2 + 2y + 1)
= x2 - (y + 1)2 = (x - y - 1)(x + y + 1)
Với x = 93, y = 6: (93 - 6 - 1)(93 + 6 + 1) = 86 . 100 = 8600
a) \(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\) tại \(x = 49,75\)
Ta có : \(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\) \(=\left(x^2+2.x.\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right)\)
\(=\left(x+\dfrac{1}{4}\right)^2\)
Khi \(x = 49,75\) ,ta có :
\(\left(49,75+\dfrac{1}{4}\right)^2\) \(=\left(\dfrac{200}{4}\right)^2\)
\(= 50^2\)
\(= 2500\)
b) \(x^2 - y^2 - 2y - 1\) tại \(x = 93\) và \(y = 6\)
Ta có : \(x^2 - y^2 - 2y - 1 = x^2 - (y^2 + 2y +1)\)
\(= x^2 - (y + 1)^2\)
\(= (x- y - 1) ( x+ y +1)\)
Khi \(x = 93\) và \(y = 6\) , ta có :
\((93 - 6 - 1) ( 93 + 6 + 1)\) \(= 86 . 100\)
\(= 8600\)
`a, x = 0 <=> (0^2-1)/(2.0+1) = -1/1 = -1`
`b,` Biểu thức không xác định vì mẫu `= 0`
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)
1.
A= x2-x+1
= x2-x . 1 +12
= ( x-1)2
Vì (x-1)2 > 0
=> Để Amin khi :
(x-1)2= 0
=> x-1 = 0
=> x = 1
Vậy với x = 1 thì A đạt giá trị nhỏ nhất
2.
x2+1/2x +1/16
=x2 +2 . 1/4 x +(1/4)2
= ( x+1/4 )2
Thay x = 49,75 vào ( x +1/4)2 , ta được :
(49,75+1/4)2
= 502
= 2500