\(\frac{-8}{5}+\frac{207207}{201201}\)

2/ Tính:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

1)\(\frac{-8}{5}+\frac{207207}{201201}\)

=\(\frac{-8}{5}+\frac{207}{201}\)

=\(\frac{-8}{5}+\frac{69}{67}\)

=\(\frac{-191}{335}\)

30 tháng 1 2017

giúp mk bài 2 luôn đi

10 tháng 11 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)

\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)

2 tháng 10 2017

\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)

\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)

\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)

\(=>x+2001=0\)

\(x=-2001\)

\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)

\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(=>x+1998=0\)

\(x=-1998\)

6 tháng 4 2018

dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

11 tháng 1 2020

Ta có \(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+...\frac{1}{2002}=VP\)

Vậy...

21 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

=  \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)

4 tháng 12 2018

tui mới học lớp 6 thui

28 tháng 8 2016

Ta có :

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy ...

=>x+4/2000+1+x+3/2001+1=x+2/2002+1+x+1/2003+1

=>x+2004/2000+x+2004/2001=x+2004/2002+x+2004/2003

=>(x+2004)(1/2000+1/2001-1/2002-1/2003)=0

=>x+2004=0

=>x=-2004

24 tháng 9 2019

undefined

( Câu trả lời bằng hình ảnh )

24 tháng 9 2019

Tham khảo:

Violympic toán 7

27 tháng 9 2017

Ta có \(\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}+\frac{x+4}{2004}=4\)

\(\Rightarrow\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}+\frac{x+4}{2004}-4=0\)

\(\Rightarrow\frac{x+1}{2001}-1+\frac{x+2}{2002}-1+\frac{x+3}{2003}-1+\frac{x+4}{2004}-1=0\)

\(\Rightarrow\frac{x+1-2001}{2001}+\frac{x+2-2002}{2002}+\frac{x+3-2003}{2003}+\frac{x+4-2004}{2004}=0\)

\(\Rightarrow\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}+\frac{x-2000}{2004}=0\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)=0\)

Ta thấy ngay \(\Rightarrow\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\ne0\)

\(\Rightarrow x-2000=0\Rightarrow x=2000.\)

27 tháng 9 2017

\(\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}+\frac{x+4}{2004}=4\)

\(\Leftrightarrow\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)+\left(\frac{x+4}{2004}-1\right)=0\)

\(\Leftrightarrow\left(\frac{x+1-2001}{2001}\right)+\left(\frac{x+2-2002}{2002}\right)+\left(\frac{x+3-2003}{2003}\right)+\left(\frac{x+4-2004}{2004}\right)=0\)

\(\Leftrightarrow\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}+\frac{x-2000}{2004}=0\)

\(\Leftrightarrow\left(x-200\right)\left[\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right]=0\)

\(\Leftrightarrow x-2000=0\)

\(\Leftrightarrow x=2000\)