Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
1/�+12+�+13+�+14=�+15+�+162x+1+3x+1+4x+1=5x+1+6x+1
⇔�+12+�+13+�+14−�+15−�+16=0⇔2x+1+3x+1+4x+1−5x+1−6x+1=0
⇔(�+1)(12+13+14−15−16)=0⇔(x+1)(21+31+41−51−61)=0
Vì12+13+14−15−16>021+31+41−51−61>0nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
1/�+12+�+13+�+14=�+15+�+162x+1+3x+1+4x+1=5x+1+6x+1
⇔�+12+�+13+�+14−�+15−�+16=0⇔2x+1+3x+1+4x+1−5x+1−6x+1=0
⇔(�+1)(12+13+14−15−16)=0⇔(x+1)(21+31+41−51−61)=0
Vì12+13+14−15−16>021+31+41−51−61>0nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
1) 2x = 3y và x2 - y2 =125
⇒ \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{2^2}\)
⇒ \(\dfrac{x^2}{9}=\dfrac{y^2}{4}\) và x2 - y2 = 125
*Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{4}\) = \(\dfrac{x^2-y^2}{9-4}=\dfrac{125}{5}=25\)
⇒ x2 = 25 . 9 = 225 ⇒ x = 15
⇒ y2 = 25 . 4 = 100 ⇒ y = 10
Vậy x = 15 và y = 10
3) \(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}\) và 2x + 5y - 2z = 100
⇒ \(\dfrac{x}{7}=\dfrac{y}{20};\dfrac{y}{5}=\dfrac{z}{8}\)
⇒ \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\) và 2x + 5y - 2z = 100
*Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\) = \(\dfrac{2\text{x}+5y-2\text{z}}{2.7+5.20-2.32}=\dfrac{100}{50}=2\)
⇒ x = 2 . 7 = 14
⇒ y = 2 . 20 = 40
⇒ z = 2 . 32 = 64
Vậy x = 14; y = 40 và z = 64.
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
a: \(\Leftrightarrow\left|x-3\right|=12-5x-8=-5x+4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(-5x+4\right)^2=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(5x-4-x+3\right)\left(5x-4+x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(4x-1\right)\left(6x-7\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{4}\)
b: \(\left(\sqrt{x}+3\right)^{10}=1024\cdot125^2\cdot25^2\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)^{10}=2^{10}\cdot5^6\cdot5^4=10^{10}\)
\(\Leftrightarrow\sqrt{x}+3=10\)
hay x=49
c: \(\dfrac{3-0.2x}{5}=\dfrac{7}{15}+1.4x\)
\(\Leftrightarrow\dfrac{9-0.6x}{15}=\dfrac{7}{15}+\dfrac{21x}{15}\)
=>21x+7=9-0,6x
=>21,6x=-2
hay x=-5/54
d: \(\Leftrightarrow\left(\dfrac{4}{3}\right)^{3x}=\dfrac{5^9\cdot7^9\left(4\cdot7-5^2\right)}{5^9\cdot7^9\cdot4}\)
\(\Leftrightarrow\left(\dfrac{4}{3}\right)^{3x}=\dfrac{28-25}{4}=\dfrac{3}{4}\)
=>3x=-1
hay x=-1/3
a)(x − 12)2 = 0
=>x − 12 = 0
=> x = 12
b) (x+12)2 = 0,25
=> x + 12 = 0,5 hoặc x + 12= -0,5
=> x = -11,5 hoặc x = -12,5
c) (2x−3)3 = -8
=> 2x - 3 = -2
=> x = 0,5
d) (3x−2)5 = −243
=> 3x - 2 = -3
=> x = -1/3
e) (7x+2)-1 = 3-2
=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)
=> 7x + 2 = 9
=> x = 1
f) (x−1)3 = −125
=> (x−1) = −5
=> x = -4
g) (2x−1)4 = 81
=> 2x - 1 = 3
=> x = 2
h) (2x−1)6 = (2x−1)8
=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1
=> x = 1/2 hoặc x = 1 hoặc x = 0
a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy ..
c/ \(\left(2x-3\right)^3=-8\)
\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-3=-2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
d/ \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Leftrightarrow3x-2=-3\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
e/ \(\left(x-1\right)^3=-125\)
\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x-1=-5\)
\(\Leftrightarrow x=-4\)
Vậy..
f/ \(\left(2x-1\right)^4=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy...
g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy..
a/ \(x+\dfrac{3}{5}=\dfrac{4}{7}\)
\(x=\dfrac{4}{7}-\dfrac{3}{5}\)
\(x=-\dfrac{1}{35}\)
Vậy ....
b/ \(x-\dfrac{5}{6}=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+\dfrac{5}{6}\)
\(x=1\)
Vậy ....
c/\(-\dfrac{5}{7}-x=\dfrac{-9}{10}\)
\(x=\dfrac{-5}{7}-\dfrac{-9}{10}\)
\(x=\dfrac{13}{70}\)
Vậy .....
d/ \(\dfrac{5}{7}-x=10\)
\(x=\dfrac{5}{7}-10\)
\(x=\dfrac{-65}{7}\)
Vậy ...
e/ \(x:\left(\dfrac{1}{9}-\dfrac{2}{5}\right)=\dfrac{-1}{2}\)
\(x:\dfrac{-13}{45}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}.\dfrac{-13}{45}\)
\(x=\dfrac{13}{90}\)
Vậy ....
f/ \(\left(\dfrac{-3}{5}+1,25\right)x=\dfrac{1}{3}\)
\(0,65.x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:0,65\)
\(x=\dfrac{20}{39}\)
Vậy ....
g/ \(\dfrac{1}{3}x+\left(\dfrac{2}{3}-\dfrac{4}{9}\right)=\dfrac{-3}{4}\)
\(\dfrac{1}{3}x+\dfrac{2}{9}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x=\dfrac{-35}{36}\)
\(\Leftrightarrow x=\dfrac{-35}{12}\)
Vậy ...
1. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5\)
2. \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x\left(1+5^2\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
Vậy ...