Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Khi \(a=b=c\)
b)\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ca=0\)
\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)
Khi \(a=b=c\)
c)\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Khi \(a=b=c\)
Bài 2:
Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow-2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow ab+bc+ca=-1\)\(\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ca+c^2ab\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\left(vi`....a+b+c=0\right)\)
Khi đó: \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)
so u cn tk m sl fr u
a2 + b2+ c2 = ab + bc + ca
=> a2 + b2+ c2 -ab - bc - ca = 0
=> 2 ( a2 + b2 + c2 -ab -bc - ca) =0
=> ( a2 - 2ab + b2 ) + ( b2 -2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a-b )2 + ( b -c)2 + ( c- a)2 =0
Do ( a -b)2 \(\ge\)0 ( b-c)2 + \(\ge\)0 ( c -a )2 \(\ge\)0
=> a-b =0 ; b -c = 0 ; c -a = 0
=> a=b ; b = c ; c =a
Vậy a = b = c
M = a2 + b2 + (a+b)2 = a2 + b2 + a2+ 2ab + b2 = 2a2 + 2b2 + 2ab = 2(a2 + ab+ b2) = 2.7 = 14
M = a2 + b2 + (a+b)2 = 2a2 + 2b2 + 2ab = 2(a2 + ab+ b2) =14
Tương tự với a4 + b4 + (a+b)4
\(\left(a-b\right)^2+2=?\) hở bạn thiếu đề hay sao ấy
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
(a + b)2 = a2 + 2ab + b2
Mà a2 = 4 => a = 2
ab = 4 => b = 2
=> 22 + 2.2.2 + 22 = 24
~ Học tốt ~
a^2=4=>a=2hoặc a=-2
với a=2=>b=2=>(a+b)^2=16
với a=-2=>b=-2=>(a+b)^2=16
=> (a+b)^2 =16 với mọi a,b sao cho a^2 =4 và ab=4