Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5y = 72
=> y = 72/5
2x = 3y
<=> 2x = 3 . 72/5
<=> 2x = 216 / 5
<=> x =108/5
3x - 7y + 5z = -30
<=> 3 . 108/5 - 7. 72/5 + 5z = - 30
<=> 324/5 - 504/5 +5z = -30
<=> 5z = 6
<=> x = 6/5
câu a đoạn cuối z = 6/5 nha
b) x : y : z = 5 : 3 :4
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)
=> x =-605/ 7
=> y = -363 / 7
=> z = -484 / 7
\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5
Áp dụng tính chất DTSBN ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)
x/1/2 = -30 => x = -15
y/1/3 = -30 => y = -10
z/1/5 = -30 => z = -6
TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)
x/1/2 = 30 => x = 15
y/1/3 = 30 => y = 10
z/1/5 = 30 => z= 6
a,
2x=3y=5z
=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
mà l x-2y l =5
=>x-2y=5 hoặc x-2y=-5
nếu x-2y=5
=>x/15=2y/20=x-2y/15-20=5/-5=-1
=>x=-15
=>y=-10
=>z=-6
nếu x-2y=-5
=>x/15=2y/20=x-2y=-5/-5=1
=>x=15
=>y=10
=>z=6
còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm ! đăng câu khác mik làm tiếp cho !
Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{3-z}{-4}\)
Ap dụng tính chất của tỉ lệ thức ta có \(\frac{2x-2}{4}=\frac{2x-2+3y-6+3-z}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)
Lại có 2x+3y-z=50\(\Rightarrow\frac{2x-2}{4}=\frac{50-5}{9}=5\Rightarrow2x-2=20\Rightarrow x=11\)
Tương tự \(\frac{y-2}{3}=5\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z=23\)
Vậy x=11,y=17,z=23
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:
\(\frac{x-1+y-2-\left(z-3\right)}{2+3-4}\)=\(\frac{2x-2+3y-6-z+3}{4+9-4}\)
=\(\frac{2x-3y-z-2-6+3}{9}\)=\(\frac{2x-3y-z-\left(2+6-3\right)}{9}\)
=\(\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\frac{2x-2}{4}=5\)x = 11
\(\frac{3y-6}{9}=5\) y=17
\(\frac{z-3}{4}=5\)
z = 23
Bài làm
Vì \(x:y:z=3:5:7\)
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x-3y+z}{6-15+7}=\frac{0,5}{-2}=-0,25\)
Do đó: \(\hept{\begin{cases}\frac{x}{3}=-0,25\\\frac{y}{5}=-0,25\\\frac{z}{7}=-0,25\end{cases}\Rightarrow\hept{\begin{cases}x=-0,75\\y=-1,25\\z=-1,75\end{cases}}}\)
Vậy \(x=-0,75\)
\(y=-1,25\)
\(z=-1,75\)
# Chúc bạn học tốt #
Theo tính chất dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)và \(2x-3y+z=0,5\)
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{2x}{3.2}=\frac{3y}{5.3}=\frac{2x-3y+z}{6-15+7}=\frac{0,5}{-2}=-0,25\)
\(\frac{x}{3}=-0,25\Rightarrow x=-0,25.3=-0,75\)
\(\frac{y}{5}=-0,25\Rightarrow y=-0,25.5=-1,25\)
\(\frac{z}{7}=-0,25\Rightarrow z=-0,25.7=-1,75\)
B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)
\(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)
TỪ ĐÓ SUY RA Y=9;Z=15
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)
ADTCDTS=NHAU TA CÓ
\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)
x=15
y=10
z=8
b) Ta có BCNN(2,3,4)=12
\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)
ADTCDTS=NHAU TA CÓ
\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)
\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)
\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)
TUỰ KẾT LUẬN NHA BẠN
C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)
ADTCDTS=NHAU TA CÓ
\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)
\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)
\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)
\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)
\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)
\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)
TỰ KẾT LUẠN NHA