K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

2.

x2 - 2x + 1 = 6y2 - 2x +2

x2 - (2x - 1) = 6y2 - (2x -1) +1

x2 = 6y2 +1

x2 - 1 = 6y2

(x - 1) (x + 1) = 6y2

Ta có:

    (x - 1) + (x + 1) =2x chia hết cho 2

   (x + 1) - (x - 1)  = 2 chia hết cho 2

=> (x-1) và (x+1) cùng tính chẵn lẻ

+/ x -1 và x + 1 cùng lẻ

=> ( x-1) (x +1) là số lẻ

Mà 6y2 luôn là số chẵn

=> Trường hợp này loại

+/ x -1 và x + 1 cùng chẵn

=> ( x-1) (x +1) là hai số chẵn liên tiếp

Mà tích hai số chẵn liên tiếp luôn chia hết cho 8

=> (x - 1) ( x +1) chia hết cho 8

=> 6y2 chia hết cho 8

=>3y2 chia hết cho 4

Mà (3 ,4) = 1

=> y2 chia hết cho 4

Mà x , y là các số nguyên tố

=> y = 2

=> x2 = 6 . 22 +1

=> x2 = 25

=>x = 5

Vậy x =5, y = 2

 

1) 

(=)x2 = 82 + 62 = 64+36=100=102 = (-10)2 

=> x=10 hoặc x=-10

2)

(=)|x-1| = -26/-24=13/12

=> x-1 = 13/12 hoặc x-1=-13/12

=> x= 25/12 hoặc x= -1/12

3) 

(2x-4+7)\(⋮\left(x-2\right)\) 

(=) 2(x-2) + 7 \(⋮\left(x-2\right)\)

(=) 7 \(⋮\left(x-2\right)\)

(=) x-2 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

(=) x\(\in\left\{-5;1;3;9\right\}\)

vì x bé nhất => x=-5

#Học-tốt

27 tháng 8 2023

làm ơn giúp 🙏🙏🙏

a: =>1/3x+2/5x-2/5=0

=>11/15x-2/5=0

=>11/15x=2/5

=>x=2/5:11/15=2/5*15/11=30/55=6/11

b: =>-5x-1-1/2x+1/3=x

=>-11/2x-2/3-x=0

=>-13/2x=2/3

=>x=-2/3:13/2=-2/3*2/13=-4/39

c: (x+1/2)(2/3-2x)=0

=>x+1/2=0 hoặc 2/3-2x=0

=>x=1/3 hoặc x=-1/2

d: 9(3x+1)^2=16

=>(3x+1)^2=16/9

=>3x+1=4/3 hoặc 3x+1=-4/3

=>3x=1/3 hoặc 3x=-7/3

=>x=1/9 hoặc x=-7/9

\(\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{1}{3}\\2x-\dfrac{2}{3}=\dfrac{-1}{3}\end{matrix}\right.\left[{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

a)\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

 

12 tháng 2 2016

ủng hộ lên 0 điểm nha

31 tháng 7 2019

a) Ta có = 1 = 1.1 = (-1) . (-1)

Lập bảng xét 2 trường hợp ta có : 

\(x+3\)\(1\)\(-1\)
\(y+2\)\(1\)\(-1\)
\(x\)\(-2\)\(-4\)
\(y\)\(-1\)\(-3\)

Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)

b) 

31 tháng 7 2019

\(a;\left(x+3\right)\left(y+2\right)=1\)

=> Có 2 TH:

*TH1:  x+3 = 1    và       y+2 =1

      => x = -2                 y = -1

* TH2:  x +3 = -1    và y + 2 = -1

     => x = -4                y = -3

28 tháng 7 2018

ta có \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)

mà \(\left(x-2\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

b)

ta có  \(\hept{\begin{cases}\left|2x-6\right|\ge0\\\left|y+7\right|\ge0\end{cases}}\)

mà \(\left|2x-6\right|+\left|y+7\right|=0\)

\(\Rightarrow\hept{\begin{cases}2x-6=0\\y+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-7\end{cases}}}\)

28 tháng 7 2018

tốt lắm

12 tháng 2 2016

a,Chịu

b,

⇔(x2+1)(x+1)=(2y+1)2⇔(x2+1)(x+1)=(2y+1)2

Dễ chứng minh x2+1x2+1 và x+1x+1 nguyên tố cùng nhau, do đó x2+1x2+1 và x+1x+1 đều là số chính phương, mặt khác x2x2 và x2+1x2+1 là hai số nguyên liên tiếp, nên x=0x=0, tới đây thay vào phương trình ban đầu

12 tháng 2 2016

ủng hộ mình lên 280 điểm với các bạn