Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{4x}< =10\)
<=> 4x <= 100
<=> x <= 25
b) \(\sqrt{9x}>=3\)
<=> 9x >= 9
<=> x >= 1
c) \(\sqrt{4x^2+4x+1}=6\)
<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)
<=>\(\sqrt{\left(2x+1\right)^2}=6\)
<=>\(|2x+1|=6\)
<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)
d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)
<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)
<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)
<=>\(\sqrt{x-1}=6\)
<=> x - 1 = 36
<=> x = 37
f) \(\sqrt{2x+1}=\sqrt{x-1}\)
<=> 2x + 1 = x -1
<=> 2x - x = -1 -1
<=> x = -2
g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)
<=>x2 -x -1 = x -1
<=> x2 -x-x-1+1 = 0
<=> x2 - 2x + 0 = 0
<=> x(x-2) = 0
<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)
\(\Leftrightarrow4x=100\)
\(\Leftrightarrow x=25\)
\(S=\left\{25\right\}\)
b) \(\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)
\(\Leftrightarrow x-1=8\)
\(\Leftrightarrow x=9\)
\(S=\left\{9\right\}\)
c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)
\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)
\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)
\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)
\(S=\left\{1;-1\right\}\)
d) \(\sqrt{2x-5}=x-2\)
\(\Leftrightarrow2x-5=x^2-4x+4\)
\(\Leftrightarrow-x^2+2x+4x-5-4=0\)
\(\Leftrightarrow-x^2+6x-9=0\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-2x+1=x+1\)
\(\Leftrightarrow x^2-2x-x+1-1=0\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{0;3\right\}\)
g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)
\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)
\(\Leftrightarrow x^2-9=x-3\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)
\(S=\left\{-2;3\right\}\)
h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-2+x-3-1=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
i) \(\sqrt{\frac{2x-3}{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow4\left(x-1\right)=2x-3\)
\(\Leftrightarrow4x-4-2x+3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(S=\left\{\frac{1}{2}\right\}\)
l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)
\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)
\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)
\(\Leftrightarrow y=10\)
KẾT luận : ..............
Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho
CHÚC BẠN HỌC TỐT!
m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)
<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)
<=> \(2\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}=0\) <=>x=1
Vậy \(S=\left\{1\right\}\)
n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))
<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)
<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)
<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)
<=> x+\(\left|x-1\right|=2\)(1)
TH1: \(\frac{1}{2}\le x\le1\)
Từ (1) => x+1-x=2
<=> 1=2(vô lý)
TH2: x>1
Từ (1)=> x+x-1=2
<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))
Vậy \(S=\left\{\frac{2}{3}\right\}\)
p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))
Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1
Có \(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)
<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)
<=> \(a+b=b-2\sqrt{ab}+a\)
<=> 0=\(-2\sqrt{ab}\)
=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))
Vậy \(S=\left\{2\right\}\)
q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))
Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên có:
\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)
Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)
Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))
Vậy \(S=\left\{8\right\}\)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
\(\sqrt{x^2-1}-x^2+1=0\)
\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)
\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)
\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)
Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)
b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
\(\sqrt{x^2-4}-x+2=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)
kl: x=2
c) \(\sqrt{x^4-8x^2+16}=2-x\)
\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)
\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)
Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)
(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)
Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)
Kl: x=-3, x=-1,x=2
d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)
Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)
(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)
Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)
(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)
Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)
e) Đk: \(x\ge-\dfrac{3}{2}\)
\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)
\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)
kl: \(x=-\dfrac{5}{8}\)
f) Đk: x >/ 5
\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\left(N\right)\)
kl: x=9
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
a) \(\sqrt{2x}=12\left(đk:x\ge0\right)\)
\(2x=144\)
\(x=72\)
b) \(\sqrt{9x^2-6x}+1=10\)\(\left(Đk:x\le0;x\ge\dfrac{2}{3}\right)\)
\(\sqrt{9x^2-6x}=9\)
\(9x^2-6x=81\)
\(\left(3x-1\right)^2=82\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{82}+1}{3}\\x=\dfrac{1-\sqrt{82}}{3}\end{matrix}\right.\)
c) \(x^2\sqrt{5}-\sqrt{125}=0\)
\(x^2\sqrt{5}=5\sqrt{5}\)
\(x^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
các thầy cô giúp e vs ạ