Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) (x + 2)(x + 3) - (x - 2)(x + 5) = 0
<=> x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 0
<=> x2 + 3x + 2x + 6 - x2 - 5x + 2x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
<=> (2x + 3)(x - 4) + (x - 5)(x - 2) - (3x - 5)(x - 4) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - (3x2 - 12x - 5x + 20) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - 3x2 + 12x + 5x - 20 = 0
<=> 5x = 12 - 10 + 20
<=> 5x = 22
<=> x = 22/5
c) (8 - 5x)(x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
<=> 8x + 16 - 5x2 - 10x + (4x - 8)(x + 1) + 2(x2 - 4) = 0
<=> 8x + 16 - 5x2 - 10x + 4x2 + 4x - 8x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x(x - 6) = 0
<=> x = 0 hay x - 6 = 0
I<=> x = 6
d) (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
<=> 24x2 + 16x - 9x - 6 - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
<=> 24x2 + 16x - 9x - 6 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
<=> 10x2 - 19x = 0
<=> x(10x - 19) = 0
<=> x = 0 hay 10x - 19 = 0
I <=> 10x = 19
I <=> x = 19/10
a) (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
(2x+3)(x-4)+(x-5)(x-2)-(3x-5)(x-4)=0\(2x^2-8x+3x-12+x^2-2x-5x+10-3x^2+12x+5x-20\)=0
(\(2x^2+x^2-3x^2\))+(-8x+3x-2x-5x+12x+5x)+(-12+10-20) =0 5x-22 =0
5x = 22
x = \(\dfrac{22}{5}\)
Vậy x= \(\dfrac{22}{5}\)
b) (8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)
(8x-3)(3x+2)-(4x+7)(x+4)-(2x+1)(5x-1)=0
\(24x^2\) +16x-9x-6\(-4x^2\) -16x-7x-28\(-10x^2\) +2x-5x+1=0
(24\(x^2-4x^2-10x^2\))+(16x-9x-16x-7x+2x-5x)+(-6-28+1)=0
10\(x^2-19x-33\)=0
10\(x^2+11x-30x-33=0\)
x(10x+11)-3(10x+11)=0
(x-3) (10x+11)=0
=>x-3=0 => x=3 =>x=3
10x+11=0 10x=-11 x=\(\dfrac{-11}{10}\)
Vậy x=3 hoặc x=\(\dfrac{-11}{10}\)
Tìm x, biết:
a) (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
<=> \(2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
<=> \(2x^2-8x+3x+x^2-2x-5x-3x^2+12x+5x=12-10+20\)
<=> \(5x=22\)
<=> \(x=\dfrac{22}{5}\)
Vậy \(S=\left\{\dfrac{22}{5}\right\}\)
a) <=> \(2x^2-8x+3x-12+x^2-7x+10=3x^2-5x-12x+20\)
<=> \(2x^2-8x+3x-12+x^2-7x+10-3x^2+5x+12x-20=0\)
<=> \(5x-22=0\)
<=> \(5x=22\)
<=> \(x=\frac{22}{5}\)
b) <=> \(24x^2-9x+16x-6-4x^2-7x-16x-28=10x^2+5x-2x-1\)
<=> \(24x^2-9x+16x-6-4x^2-7x-16x-28-10x^2-5x+2x+1=0\)
<=> \(10x^2-19x-33=0\)
<=> \(10x^2-30x+11x-33=0\)
<=> \(10x\left(x-3\right)+11\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(10x+11\right)=0\)
<=> \(x=3;x=-\frac{11}{10}\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?