\(\frac{x}{y}\)biết:

\(\frac{2x-y}{x+y}\)=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

2. \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

vậy => đpcm

2 tháng 7 2017

1.

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Rightarrow\left(2x-y\right).3=\left(x+y\right).2\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

18 tháng 9 2016

Khó quá! Mình chưa học tỉ lệ thức

5 tháng 10 2016
đặt x/4=y/7=k suy ra x=4k y=7k mặt khác xy=112 suy ra 4k.7k=112 k^2.(4.7)=112 k^2.28=112 k^2=4 k=2;-2 x/4=2 x=8 y/7=2 y=14 x/4=-2 x=-8 y/7=-2 y=-14 2/ ta có a/b=c/d suy ra ad=bc suy ra ab+ad=ab+bc a(b+d)=b(a+c) suy ra a/b=a+c/b+d 3/ ta có a/b=c/d suy ra b/a=d/c 1-b/a=1-d/c suy ra a-b/a=c-d/c
10 tháng 7 2016

1) a) Ta có: \(\frac{x}{-15}=\frac{-60}{x}\) \(\Rightarrow x^2=\left(-15\right).\left(-60\right)=900\)

                                               \(\Rightarrow x=30\)

b) \(\frac{-2}{x}=\frac{-x}{\frac{8}{25}}\) \(\Rightarrow x.\left(-x\right)=\left(-2\right).\frac{8}{25}\)

                               \(\Rightarrow x.\left(-x\right)=\frac{-16}{25}\)

                                \(\Rightarrow x.\left(-x\right)=\left(\frac{-4}{5}\right).\frac{4}{5}\)

Vậy \(x=\frac{4}{5}\)

2) a) \(3,8: \left(2x\right)=\frac{1}{4}:2\frac{2}{3}\)

\(\Rightarrow3,8: \left(2x\right)=\frac{3}{32}\)

\(\Rightarrow2x=\frac{3}{32}:3,8=\frac{15}{608}\)

\(x=\frac{15}{608}:2=\frac{15}{1216}\)

Vậy \(x=\frac{15}{1216}\)

b) \(\left(0,25x\right):3=\frac{5}{6}:0,125\)

\(\Rightarrow\left(0,25x\right):3=\frac{20}{3}\)

\(\Rightarrow0,25x=\frac{20}{3}.3=20\)

\(\Rightarrow x=20:0,25=80\)

Vậy x = 80

c) \(0,01:2,5=\left(0,75x\right):0,75\)

\(\Rightarrow\frac{1}{250}=\left(0,75x\right):0,75\)

\(\Leftrightarrow0,75x=\frac{1}{250}.0,75=\frac{3}{1000}\)

\(\Rightarrow x=\frac{3}{1000}:0,75=\frac{1}{250}\)

Vậy \(x=\frac{1}{250}\)

d) \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)

\(\Rightarrow\frac{5}{3}=\frac{2}{3}:\left(0,1x\right)\)

\(\Rightarrow0,1x=\frac{5}{3}.\frac{2}{3}=\frac{10}{9}\)

\(\Rightarrow x=\frac{10}{9}:0,1=\frac{100}{9}\)

Vậy \(x=\frac{100}{9}\)

10 tháng 7 2016

a) \(\frac{x}{-15}=\frac{-60}{x}\Leftrightarrow x.x=-15.\left(-60\right)\Leftrightarrow x^2=900\Leftrightarrow x^2=\orbr{\begin{cases}30^2\\\left(-30\right)^2\end{cases}}\Leftrightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)

19 tháng 6 2019

1)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)

2)

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

xy=10 <=> 2k.5k=10

<=>10k2=10

<=> k=1

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

3)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

6 tháng 7 2018

a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4

\(\Rightarrow-6+3x=12x-4\)

\(\Rightarrow-2=9x\)

\(\Rightarrow x=\frac{-2}{9}\)

bài b cx tương tự nha

ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)

\(\Rightarrowđpcm\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

19 tháng 9 2019

Bài 3:

a) \(\frac{x}{1,2}=\frac{5}{6}\)

\(x.6=5.1,2\)

\(x.6=6\)

\(x=6:6\)

\(x=1\)

Vậy \(x=1.\)

b) \(\frac{5}{9}:x=\frac{7}{4}:\frac{3}{10}\)

\(\frac{5}{9}:x=\frac{35}{6}\)

\(x=\frac{5}{9}:\frac{35}{6}\)

\(x=\frac{2}{21}\)

Vậy \(x=\frac{2}{21}.\)

Bài 5:

Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\left(a+b\right).\left(d+a\right)=\left(b+c\right).\left(c+d\right)\)

\(\Rightarrow ad+a^2+bd+ba=bc+bd+c^2+cd\)

\(\Rightarrow a^2+a.\left(b+d\right)=c^2+c.\left(b+d\right)\)

\(\Rightarrow a.\left(b+d\right)=c.\left(b+d\right)\)

\(\Rightarrow a=c\left(đpcm\right).\)

Chúc bạn học tốt!

19 tháng 9 2019

Nhầm. Chúc em học tốt! Contrim Đẹptrai

7 tháng 8 2018

Bài 1:

a) \(\frac{x}{-15}=\frac{-60}{x}\Rightarrow x^2=\left(-60\right).\left(-15\right)=900\Rightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)

Bài 2: Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)

\(\Rightarrow xy=4k.7k=28k^2=112\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

\(\Rightarrow\orbr{\begin{cases}x=4.2=8\\x=-4.2=-8\end{cases}}\)

Và \(\orbr{\begin{cases}y=7.2=14\\y=-7.2=-14\end{cases}}\)

Bài 3: \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)

\(\Rightarrow\frac{4}{3}:\frac{4}{5}=\frac{2}{3}:\frac{1}{10}x\Rightarrow\frac{5}{3}=\frac{2}{3}:\frac{1}{10}x\)

\(\Rightarrow\frac{1}{10}x=\frac{2}{5}\Rightarrow x=4\)

7 tháng 8 2018


Mk trả lời nốt bài 4 hộ bn MMS_Hồ Khánh Châu nha:
Bài 4:
Gọi x là giá trị chung của 2 phân số trên.
Ta có: \(\frac{a}{b}=\frac{c}{d}=x\)
\(\Rightarrow a=x.b \)
      \(c=x.d\)
Ta lại có: 
\(\frac{a+c}{b+d}=\frac{x.b+x.d}{b+d}=\frac{x.\left(b+d\right)}{b+d}=x\)
Và \(\frac{a}{b}=x\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\)
Hk tốt nha