K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

khó @gmail.com

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

15 tháng 12 2015

tick cho mình 4 cái nữa cho đủ 70 điểm hỏi đáp

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này

11 tháng 2 2019

Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5

=> 11a + 2b chia hết cho d

=> 18a + 5b chia hết cho d

=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d

=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d

=> 19b chia hết cho d ( 1 )

=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d

=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d

=> 19a chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d

=> d thuộc Ư(19)

=> d thuộc { 1 ; 19 }

Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b

=> d = 19.

23 tháng 11 2016

1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017

= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)

= 1 + 0 + 0 + 0 + .........+ 0

= 1

24 tháng 11 2016

Giả sử a là số nguyên tố chia 12 dư 9

=> a = 12k + 9 ( k \(\in\)N* )

= 3(4k + 3 ) chia hết cho 3

=> a chia hết cho 3. Mà a là số nguyên tố

=> a = 3

Mà 3 chia 12 dư 3

=> Điều giả sử trên là sai !

Vậy không có số nguyên tố nào chia 12 dư 9