K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 2 2020

a/ \(n^2+n+1=k^2\Leftrightarrow4n^2+4n+1+3=4k^2\)

\(\Leftrightarrow\left(2n+1\right)^2+3=\left(2k\right)^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=3\)

\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=3\)

Pt ước số đơn giản, chắc bạn tự giải ra n được

b/ Do \(2b^2\) chẵn, 1 lẻ \(\Rightarrow a^2\) lẻ \(\Rightarrow a\) lẻ

\(a^2-2b^2=1\Leftrightarrow a^2-1=2b^2\Leftrightarrow\left(a-1\right)\left(a+1\right)=2b^2\)

Do a lẻ \(\Rightarrow a+1\)\(a-1\) đều chẵn

\(\Rightarrow\left(a+1\right)\left(a-1\right)⋮4\Rightarrow b^2⋮2\Rightarrow b⋮2\)

Mà b là SNT \(\Rightarrow b=2\Rightarrow a=3\)

NV
30 tháng 3 2021

1. 

\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)

\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số

2.

\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)

\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)

\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)

\(\Leftrightarrow...\)

30 tháng 3 2021

Em xin cách làm bài 1 ạ 

9 tháng 9 2020

Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương

\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)

\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:

\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.

Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)

\(\Rightarrow3y^2+3y+1=2n+5\)

Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:

\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)

Vì nguyên dương nên nhận y=2--->n=7

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
1 tháng 2 2021

Sau khi thử bằng pascal thì em thấy bài này hình như có vô số nghiệm (Chắc là sai đề). Nhưng nếu ai tìm được công thức tổng quát của k thì hay biết mấy.

QT
Quoc Tran Anh Le
Giáo viên
1 tháng 2 2021

Tôi xin bài này để đăng lên trang face ông nhé :)

9 tháng 8 2023

Đặt \(3p+4=k^2\left(k\ge4\right)\)

\(\Leftrightarrow k^2-4=3p\)

\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)

Ta thấy \(0< k-2< k+2\) nên có 2TH:

TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.

TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.

Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

14 tháng 8 2020

Đặt:    \(5p+1=a^3;a\inℕ^∗\)

=>     \(5p=a^3-1\)

<=>   \(5p=\left(a-1\right)\left(a^2+a+1\right)\)

<=>    \(a-1;a^2+a+1\)   đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)

Do:   \(a\inℕ^∗\)    =>   \(a-1< a^2+a+1\)    Do: p là SNT  =>  \(1< 5p\)

=> Ta thực tế chỉ phải xét 3 trường hợp:

TH1:    \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)

=>    \(a=2\)  

=>    \(5p=2^2+2+1=4+2+1=7\)

=>    \(p=\frac{7}{5}\)     => Loại do p là SNT.

TH2:   \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)

=>    \(a=6\)

=>    \(p=6^2+6+1=43\)

THỬ LẠI:     \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)

TH3:    \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)

=>    \(a^2+a=4\)

=>   Thử \(a=1;a=2\)đều loại. Và \(a>2\)  thì  \(a^2+a>4\)     (LOẠI)

a = 0 cũng loại do a thuộc N*.

Vậy duy nhất có nghiệm      \(p=43\)    là thỏa mãn điều kiện.