Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 :
tôi làm từng phần 1 nhé
bài 2 :
a)<=>(x+1)+3 chia hết x+4
=>3 chia hết x+4
=>x+4\(\in\){1,-1,3,-3}
=>x\(\in\){-3,-6,-1,-7}
a. (x;y) \(\in\){ (1; 12); (2; 6); (3; 4); (4; 3); (6; 2); (12; 1) }
b. =>
x-1 | 1 | 7 |
y+2 | 7 | 1 |
=>
x | 2 | 8 |
y | 5 | -1(loại) |
Vậy (x;y) = (2; 5)
c. =>
x | 1 | 17 |
y-3 | 17 | 1 |
=>
x | 1 | 17 |
y | 20 | 4 |
Vậy (x; y) = (1; 20) hoặc (x; y) = (17; 4)
d. =>
2x+1 | 1 | 2 | 3 | 4 | 6 | 12 |
y-3 | 12 | 6 | 4 | 3 | 2 | 1 |
=>
x | 0 | 0,5(loại) | 1 | 1,5(loại) | 2,5(loại) | 5,5(loại) |
y | 15 | 9 | 7 | 6 | 5 | 4 |
Vậy (x;y) = (0; 15) hoặc (x; y) = (1; 7).
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
c1ne:ta co 12=1.12=12.1=-1.-12=-12.-1
sau đó giải từng trường hợp
sau đó ta lý luận rằng vì 2x+1 là số lẻ nên ta có các trường hợp sau
2x+1=1
2x=0
x=0
y=12
trường hợp 2:
2x-1=-1
2x=-2
x=-1
vậy ta có những cặp (x;y) là (bạn tự kết luận nhé)
các câu tiếp làm tupngw tư nhé
tớ lam nốt câu cuối nè
bước 1 ta lập luân rắng
vì UwCLN(x;y)=5 nên
x chia hết cho 5
y chia hết cho 5
nên suy ra 5 thuoc B(5)
tự làm nốt nhé mình nghe điện thoại nhớ tích đồ nghề
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
1.
a, Ta có
x + 4 chia hết x +1
Suy ra(x +1) +3 chia hết x + 1 Suy ra 3 chia hết x + 1
Suy ra x + 1 thuộc Ư(3) = {1,3}
Ta lập bảng
b, Xét 2 trường hợp
TH1: 2x =0 suy ra x =0
TH2: (x - 1) = 0 suy ra x =1