K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2022

     x4 = xy + 2

⇔  x4 - xy = 2

  ⇔ x(x3 - y) = 2

th1 \(\left\{{}\begin{matrix}x=2\\x^3-y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\)

th2 \(\left\{{}\begin{matrix}x=1\\x^3-y=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

th3 \(\left\{{}\begin{matrix}x=-2\\x^3-y=-1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=-7\end{matrix}\right.\)

th4 \(\left\{{}\begin{matrix}x=-1\\x^3-y=-2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

 

 

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

21 tháng 6 2016

Dạo này cậu học Toán 8 nâng cao hay trong sgk vậy?

21 tháng 6 2016

toán cơ bản

10 tháng 10 2019

Câu hỏi của Nguyễn Triệu Yến Nhi - Toán lớp 6 - Học toán với OnlineMath

20 tháng 8 2020

(x;y là số nguyên tố)

\(\left(x^2-y^2\right)=4xy+1\left(1\right)\)

Ta có \(\left(x^2-y^2\right)^2-1=4xy\Leftrightarrow\left(x^2-y^2+1\right)\left(x^2-y^2-1\right)=4xy\) (**)

Vì (1) là phương trình đối xứng và x,y là số nguyên nên đặt 

\(2\le x< y\Rightarrow\hept{\begin{cases}x+y\ge6\\x+y\ge5\end{cases}}\)và y là số lẻ (I) ta có:

(**) <=> (đến đây có 5 TH tìm được (x;y)=(2;5))

ìm số nghiệm nguyên không âm của bất phương trình:
x1 + x2 + x3 + x4 ≤ 17 với điều kiện x≤ 5, x≤ 6 và x≤ 8
Đương nhiên rồi, để khử dấu bất đẳng thức ta phải đặt thêm một biến x5 ≥ 0 để trở thành phương trình nghiệm nguyên.
x1 + x2 + x3 + x4 + x5 = 17 (*)

Tiếp tục như cách làm trên ta gọi:
- Gọi A là tập nghiệm của (*) thỏa mãn x≥ 6
- Gọi B là tập nghiệm của (*) thỏa mãn x≥ 7
- Gọi C là tập nghiệm của (*) thỏa mãn x≥ 9
- Gọi D là tập nghiệm của (*)
- Gọi E là tập nghiệm của (*) thỏa mãn x≤ 5, x≤ 6 và x≤ 8

23 tháng 2 2019

♌Nood_Tgaming♌BoxⒹ(ⓉToán-VănⒷ)✖ bớt spam dùm con

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0

27 tháng 3 2021

\(x^2+x+xy-2y^2-y=5\)

\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)

\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)

\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)

Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)

Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)

Do đó \(\left(x-y\right)\inℤ^+\)

Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))

\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))

Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)

27 tháng 3 2021

Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.