Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}=\dfrac{1}{x^2}-\dfrac{1}{x}+5=\left(\dfrac{1}{x^2}-\dfrac{1}{x}+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(A_{min}=\dfrac{19}{4}\) khi \(\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\)
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
\(x^2+10x+2\)
\(=x^2+10x+25-23\)
\(=\left(x+5\right)^2-23\ge-23\)
(Dấu "="\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\))
\(x^2+10x+2\)
\(=x^2+10x+25-23\)
\(=\left(x+5\right)^2-23\ge-23\)
Dấu ''='' \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
Câu 1:
\(=\left(4x^2-4xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-8y+16\right)+5\\ =\left(2x-y\right)^2+\left(x-2\right)^2+\left(y-4\right)^2+5\ge5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=2\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Câu 2:
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
\(M=5x^2-3x+1\)
\(=\left(\sqrt{5}x\right)^2-2\sqrt{5}x.\frac{3}{2\sqrt{5}}+\frac{9}{20}+\frac{11}{20}\)
\(=\left(\sqrt{5}x-\frac{3}{2\sqrt{5}}\right)^2+\frac{11}{20}\ge\frac{11}{20}\forall x\)
Vậy \(M_{min}=\frac{11}{20}\Leftrightarrow\sqrt{5}x-\frac{3}{2\sqrt{5}}=0\Leftrightarrow x=\frac{3}{10}\)
Với x \(\inℕ\)thì GTNN là -5
Với \(x\inℤ\)thì ko có GTNN.
Hk tốt