K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(A=-x^2+6x+7\)

\(A=-\left(x^2-6x-7\right)\)

\(A=-\left(x^2-2\cdot x\cdot3+3^2-16\right)\)

\(A=-\left[\left(x-3\right)^2-16\right]\)

\(A=16-\left(x-3\right)^2\le16\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

24 tháng 12 2018

\(A=-x^2+6x+7\)

\(A=-\left(x^2-2.x.3+3^2-16\right)\)

\(A=-\left(x^2-2.x.3+3^2\right)+16\)

\(A=-\left(x-3\right)^2+16\)

Ta có :\(\left(x-3\right)^2\ge0\)

\(\Rightarrow-\left(x-3\right)^2\le0\)

\(\Rightarrow A\le16\)

\(\Rightarrow Max\)\(A=16\)

\(Khi:\left(x-3\right)=0\)

\(\Rightarrow x=3\)

30 tháng 8 2016

A=(x+5/2)^2+11/2  \(\ge\)11/2

dấu bằng xảy ra khi x=-5/2

B=\(-\left(x-3\right)^2+4\le4\)

dấu bằng xảy ra khi x=3

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

15 tháng 7 2019

V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)

Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)

b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)

Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)

Dấu "="xảy ra khi (x-3)=0=>x=3

Vậy \(B_{mãx}=4\)khi x=3


 

15 tháng 7 2019

Bài 1: Tìm giá trị:

a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7

Giải phương trình trên máy tính 

Lặp 3 lần dấu" = "

kq : GTNN của A = \(-\frac{5}{2}\)

b) Lớn nhất của biểu thức: B = 6x - x2 - 5

B = -x2 + 6x - 5

Giải phương trình trên máy tính 

Lặp 3 dấu " = "

kq : GTLN của B = 3

30 tháng 1 2018

Có : A+1 = 6x+8+x^2+1/x^2+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" xảy ra <=> x+3=0 <=> x=-3

Vậy GTNN của A = -1 <=> x=-3

Tk mk nha

30 tháng 1 2018

tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê 

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

3 tháng 8 2019

a) \(F=x^2-8x+28=x^2-8x+16+12\)\(12\)\(=\left(x-4\right)^2+12\)

Vì \(\left(x-4\right)^2\ge0\forall x\)nên  F \(\ge\)12

Vậy giá trị nhỏ nhất của F là 12 khi x-4=0 hay x=4

b) \(E=6x-x^2+1=-\left(x^2-6x-1\right)\)\(=-\left(x^2-6x+9-10\right)\)\(=10-\left(x-3\right)^2\)

Vì \(-\left(x-3\right)^2\le0\forall x\)nên E \(\le\)10

Vậy giá trị lớn nhất của E là 10 khi x-3=0 hay x=3

3 tháng 8 2019

a, F = x2 - 8x + 28

= x2 - 2.x.4 + 42 +12

= (x - 4)2 + 12 >= 12 

=>MinF = 12 <=> x = 4

b,E = 6x - x2 + 1

= -( x2 - 6x - 1)

= -( x2 - 2.x.3 + 32 - 8)

= -[(x - 3)2 -8]

= -(x - 3)2 + 8 <= 8

=>MaxE = 8 <=> x = 3

17 tháng 10 2018

Đề phải là tìm Min mới đúng nhé!

\(A=6x-x^2+1=-x^2+6x+1=\left(-x^2+6x+9\right)-8\)

Đặt \(K=\left(-x^2+6x+9\right)\) .Để A đạt GTNN thì K nhỏ nhất:

ta có: \(K=\left(-x^2+6x+9\right)=-3\left(-\frac{1}{3}x^2-2x-3\right)\ge0\) (1)

Từ (1) ta có: \(A=K-8\ge-8\)

Dấu "=" xảy ra khi \(\left(-\frac{1}{3}x^2-2x-3\right)=0\Leftrightarrow x=-3\) 

Vậy \(A_{min}=-8\Leftrightarrow x=-3\)

Mấy bài kia làm tương tự

14 tháng 8 2019

tthKo bt thì đg làm nhé

\(A=6x-x^2+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left[\left(x-3\right)^2\right]+10\le10\)

Vậy GTLN của A là 10\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

22 tháng 6 2018

* Câu A : 

\(A=-x^2+6x-7\)

\(-A=x^2-6x+7\)

\(-A=\left(x^2-6x+9\right)-2\)

\(-A=\left(x-3\right)^2-2\ge-2\)

\(A=-\left(x-3\right)^2+2\le2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTLN của \(A\) là \(2\) khi \(x=3\)

* Câu B : 

\(B=-3x^2-x+4\)

\(-3B=9x^2+3x-12\)

\(-3B=\left(9x^2+3x+\frac{1}{4}\right)-\frac{49}{4}\)

\(-3B=\left(3x+\frac{1}{2}\right)^2-\frac{49}{4}\ge-\frac{49}{4}\)

\(B=-3\left(3x+\frac{1}{2}\right)^2+\frac{147}{4}\le\frac{147}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-3\left(3x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(3x+\frac{1}{2}=0\)

\(\Leftrightarrow\)\(3x=\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{1}{6}\)

Vậy GTLN của \(B\) là \(\frac{147}{4}\) khi \(x=\frac{1}{6}\)

Câu C làm tương tự 

Chúc bạn học tốt ~ 

25 tháng 2 2020

1

A ,x2-6x+10=(x-3)2+1>1=>A<5

dấu = xảy ra khi x=3

B x2-2x+5=(x-1)2+4>4=>A>-2

dâu = xay ra khi x=1

25 tháng 2 2020

a, Ta có : \(A=\frac{5}{x^2-6x+10}=\frac{5}{\left(x-3\right)^2+1}\)
Để A lớn nhất <=> \(\left(x-3\right)^2+1\)nhỏ nhất
Ta lại có:
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Vậy MaxA= 5/1=5

6 tháng 7 2016

làm ở trước nhé

6 tháng 7 2016

dạ ??