Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
Bài 1:
a) +) Ta thấy các số nguyên thỏa mãn điều kiện trên là -42, -41, -40, ...., 40, 41, 42, 43, 44
Trong đó có các cặp số đối nhau nên ta có tổng của dãy số trên bằng : 43 + 44 = 87
+ ) Ta thấy tập hợp các số nguyên x thỏa mãn điều kiện trên chứa các cặp số nguyên đối nhau nên tổng của chúng bằng 0.
Bài 2:
a) Do x, y và 2005 đều là số tự nhiên nên \(x-5\) và 3y là các số tự nhiên.
Vậy thì \(x-5\inƯ\left(2005\right)=\left\{1;5;401;2005\right\}\)
Ta có bảng:
x-5 | 1 | 5 | 401 | 2005 |
x | 6 | 10 | 406 | 2010 |
3y | 2005 | 401 | 5 | 1 |
y | Không là số tự nhiên | Không là số tự nhiên | Không là số tự nhiên | 0 |
L | L | L | N |
Vậy ta có cặp số (x ; y) = (2010; 0)
b) \(x^2+x+2\) là số nguyên tố.
Ta thấy \(x^2+x+2=x\left(x+1\right)+2\)
Do x là số tự nhiên nên \(x\left(x+1\right)⋮2\Rightarrow\left[x\left(x+1\right)+2\right]⋮2\)
Vậy để \(x^2+x+2\) là số nguyên tố thì \(x^2+x+2=2\)
Vậy x = 0.
Em cảm ơn cô Huyền ạ! Cô kết bạn với em đi ạ. Em cảm ơn cô!!
Câu 1: vì tích 4 số : (x2-1);(x2-4);(x2-7);(x2-10) âm nên phải có 1 số âm hoặc 3 số ấm
ta có : x2-1>x2-4>x2-7>x2-10
TH1: 1 số âm :x2-10<x2-7
=>7<x2<10
=> x2=9=> x=\(\pm\)3
TH2: 3 số âm và 1 số dương
x2-4<x2-1
=> 1<x2<4 (không tồn tại số nào )
vậy x=3 hoặc x=-3
câu 1: hình như đề sai. phải nhân thêm (x2-7) nữa
Câu 2: GTNN của B=|x-a|+|x-b| với a<b
ta có Min B=b-a
A= (|x-a|+|x-d|)+(|x-c|+|x-b|)
=> Min A=d-a+c-b khi a<b<c<d
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
Ta có : \(A=\frac{4x+3}{x-2}=\frac{2\left(x-2\right)+7}{x-2}=2+\frac{7}{x-2}\)
Để \(A\in Z\)thì \(7⋮x-2\)hay x-2 là Ư(7)={1;-1;7;-7}
Do đó:
x-2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy .....
Ta có : \(B=\frac{2x-15}{x+1}=\frac{2\left(x+1\right)-17}{x+1}=2-\frac{17}{x+1}\)
Để \(B\in Z\)thì \(17⋮x+1\)hay x+1 là Ư(17)={1;-1;17;-17}
Do đó :
x+1 | 1 | -1 | 17 | -17 |
x | 0 | -2 | 16 | -18 |
Vậy ................
Câu hỏi của Phạm_Tiến_Đức - Toán lớp 6 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/81346038854.html