Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
a) \(3n+5⋮n+4\)
\(\Rightarrow3.\left(n+4\right)-7⋮n+4\)
Mà \(3.\left(n+4\right)⋮n+4\)
\(\Rightarrow7⋮n+4\)
Tự tìm nốt
b) \(n^2+5⋮n+1\)
\(\Rightarrow n^2+n-n+5⋮n+1\)
\(\Rightarrow n.\left(n+1\right)-\left(n-5\right)⋮n+1\)
mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow6⋮n+1\)
Tìm nốt
1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)
- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)
- Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)
- Ta có bảng giá trị:
\(2n+1\) | \(-1\) | \(1\) | \(-11\) | \(11\) |
\(n\) | \(-1\) | \(0\) | \(-6\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-6,-1,0,5\right\}\)
2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)
- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)
\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)
- Ta có bảng giá trị:
\(n+2\) | \(-1\) | \(1\) | \(-29\) | \(29\) |
\(n\) | \(-3\) | \(-1\) | \(-31\) | \(27\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-31,-3,-1,27\right\}\)
3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)
- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) |
\(n\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-7\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)
a/
n-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
b/3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
c/
3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}
=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}
vì n E N
=>n E {0;1;3;5;6;7;8;13;16;22;40;}
.........mỏi tay V~
a, n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha
a, 3n-5chia hết cho n-2
suy ra 3(n-2)-7chia hết cho n-2
suy ra 7 chia hết cho n-2
suy ra n-2E{1,-1,7,-7}
suy ra nE{3,1,9,-5}
b,n2-7 chia hết cho n+3
suy ra n(n+3)-4chia hết cho n+3
suy ra 4 chia hết cho n+3
suy ra n+3E{1,-1,2,-2,4,-4}
suy ra nE{-2,-4,-1,-5,1,-7}
K CHO MIK NHA
CHÚC BN HỌC TỐT