K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

phần 1 đề nhầm ak sửu lại nha:

\(\left(8x^3+1\right):\left(4x^2-2x+1\right)=\left(2x+1\right)\left(4x^2-2x+1\right):\left(4x^2-2x+1\right)=2x+1\)

2) \(x^2-y^2-6x+6y\)

\(=\left(x-y\right)\left(x+y\right)-6\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-6\right)\)

19 tháng 10 2016

a) \(\left(8x^3+1\right):\left(4x^2-2x+1\right)\)

 

\(x^2-\left(y-3\right)^2-4x+4\)

\(=x^2-\left(y^2-6y+9\right)-4x+4\)

\(=x^2-y^2+6y-9-4x+4\)

\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2-\left(y-3\right)^2\)

\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)

\(=\left(x-y+5\right)\left(x+y-5\right)\)

8 tháng 10 2020

1.

x2 - ( y - 3 )2 - 4x + 4

= ( x2 - 4x + 4 ) - ( y - 3 )2

= ( x - 2 )2 - ( y - 3 )2

= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]

= ( x - 2 - y + 3 )( x - 2 + y - 3 )

= ( x - y + 1 )( x + y - 5 )

2.

a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5

= 2x4 + 10x2 - x2 + 8x3 - 4x - 5

= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )

= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )

= ( 2x2 - 1 )( x2 + 4x + 5 )

=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5

b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x

=> đpcm

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

30 tháng 11 2015

1. 4-32x3

= 4.(1-8x3)

= 4.[13-(2x)3 ]

= 4.(1-2x).(1+2x+4x2)

2. b. \(\left(\frac{x}{xy-y^2}-\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left[\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(x-y\right)}\right]:\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left[\frac{x.x}{y\left(x-y\right).x}+\frac{\left(2x-y\right).y}{x\left(x-y\right).y}\right]:\left(\frac{x+y}{xy}\right)\)

\(=\left[\frac{x^2+2xy-y^2}{xy\left(x-y\right)}\right]:\left(\frac{x+y}{xy}\right)\)

\(=\left[\frac{-\left(x-y\right)^2}{xy\left(x-y\right)}\right].\frac{xy}{x+y}\)

\(=\frac{-\left(x-y\right)}{xy}.\frac{xy}{x+y}\)

\(=\frac{y-x}{x+y}\)

6 tháng 1 2021

B1: a)\(xy\left(3x-2y\right)-2xy^2=3x^2y-2y^2x-2xy^2=3x^2y-4xy^2\)

b) \(\left(x^2+4x+4\right):\left(x+2\right)=\left(x+2\right)^2:\left(x+2\right)=\left(x+2\right)\)

\(\dfrac{2\left(x-1\right)}{x^2}.\dfrac{x}{\left(x-1\right)}=\dfrac{2\left(x-1\right)x}{x^2\left(x-1\right)}=\dfrac{2}{x}\)

B2:

a)\(2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)

b)\(x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

Mấy bài này là mấy bài rất rất rất cơ bản, học sinh TB cũng phải tự làm được, mấy bài kiểu này đừng nên đăng lên hỏi nha:vv

22 tháng 8 2023

\(8x^3+36x^2y+54xy^2+27y^3\\ =\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\\ =\left(2x+3y\right)^3\\ =\left(2x+3y\right)\left(2x+3y\right)\left(2x+3y\right)\)

\(\left(x-y\right)^3-\left(x+y\right)^3\\ =\left(x-y-x-y\right)\left(x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2\right)\\ =-2y\left(3x^2+y^2\right)\)

\(\left(x+1\right)^3+\left(x-1\right)^3\\ =\left(x+1+x-1\right)\left(x^2+2x+1-x^2+1+x^2-2x+1\right)\\ =2x\left(x^2+3\right)\)

\(\left(x-1\right)^2-\left(x+1\right)^2\\ =\left(x-1-x-1\right)\left(x-1+x+1\right)\\ =-2.2x=-4x\)

a: =(2x)^3+3*(2x)^2*3y+3*2x*(3y)^2+(3y)^3

=(2x+3y)^3

b: (x-y)^3-(x+y)^3

=(x-y-x-y)[(x-y)^2+(x-y)(x+y)+(x+y)^2]

=-2y*[x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2]

=-2y(3x^2+y^2)

c: (x+1)^3+(x-1)^3

=(x+1+x-1)[(x+1)^2-(x+1)(x-1)+(x-1)^2]

=2x*[x^2+2x+1-x^2+1+x^2-2x+1]

=2x(x^2+3)

d: =(x-1-x-1)(x-1+x+1)

=2x*(-2)=-4x

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

26 tháng 12 2021

tách nhỏ câu hỏi ra bạn

26 tháng 12 2021

\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)

\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)

\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)

\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

 

22 tháng 12 2023

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)