Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2019}{2020}=1-\frac{1}{2020}\)
\(\frac{2020}{2021}=1-\frac{1}{2021}\)
Vì \(\frac{1}{2020}>\frac{1}{2021}\) nên \(1-\frac{1}{2020}< 1-\frac{1}{2021}\)
\(\Rightarrow\frac{2019}{2020}< \frac{2020}{2021}\)
Ta có : \(\frac{672}{2017}< \frac{673}{2017}< \frac{673}{2020}\)
\(\frac{\Rightarrow672}{2017}< \frac{673}{2020}\)
1.So sánh phân số: \(\frac{2019}{2020}\) và \(\frac{2020}{2021}\)
Ta có : \(\frac{2019}{2020}\) + \(\frac{1}{2020}\) = \(\frac{2020}{2020}\) = 1
\(\frac{2020}{2021}\) + \(\frac{1}{2021}\) = \(\frac{2021}{2021}\) = 1
Mà \(\frac{1}{2020}\) > \(\frac{1}{2021}\) nên \(\frac{2019}{2020}\) < \(\frac{2020}{2021}\)
Mình chỉ biết mỗi câu này thôi, mình chắc chắn với bạn là câu này đúng không sai đâu
~ Học tốt ~
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
Ta có: \(\frac{-2017}{2018}+1=\frac{1}{2018}\)
\(\frac{-2018}{2019}+1=\frac{1}{2019}\)
Vì \(\frac{1}{2019}< \frac{1}{2018}\)
\(\Leftrightarrow\frac{-2018}{2019}+1< \frac{-2017}{2018}+1\)
\(\Leftrightarrow\frac{-2018}{2019}< \frac{-2017}{2018}\)
HOK TOT
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
a) Ta có :
N = 2018 + 2019/2019 + 2020
= 2018/2019 + 2020 + 2019/2019 + 2020
Ta thấy : 2018/2019 + 2020 < 2018/2019 ( Vì 2019 + 2020 > 2019 )
2019/2019 + 2020 < 2019/2020 ( Vì 2019 + 2020 > 2020 )
=> 2018/2019 + 2020 + 2019/2019 + 2020 < 2018/2019 + 2019/2020
=> M > N
b) Mk ko bt làm !!
c) Ta có :
19/31 > 1/2
17/35 < 1/2
=> 19/31 > 17/35
d) Ta có :
3535/3434 = 1 + 1/3534
2323/2322 = 1 + 1/2322
Ta thấy :
1/3534 < 1/2322 ( Vì 3534 > 2322 )
=> 1 + 1/3534 < 1 + 1/2322
=> 3535/3534 < 2323/2322
Hok tốt !
a) Ta có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
Vì 0<a<b nên ab+ac<ab+bc
\(\Rightarrow\frac{ab+ac}{b\left(b+c\right)}>\frac{ab+bc}{b\left(b+c\right)}\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)
Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)
Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)
\(\Rightarrow A< B\)
Ta có:
\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)
\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)
\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)
\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)
Ta lại có:
\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)
\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)
\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)
\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)
Do \(2019^{2021}+1>2019^{2019}+1\)
\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)
\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)
Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.
Vậy A > B .
Bạn Dont look at me
Bạn nên làm theo bạn ấy
Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng
Theo mk là vậy