K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

\(M=2^{17}-\left(1+2+2^2+.....+2^{16}\right)\)=\(2^{17}-\left(\dfrac{\left(2^{16}-1\right)16}{2}\right)\)

27 tháng 6 2016

\(=20^2-19^2+18^2-17^2+...+2^2-1^2\)

\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=39+35+..+3\)

\(=210\)

17 tháng 9 2015

Ta có:A= 2^20+2^19+2^18+...+2^2+2+1

=>2A=2^21+2^20+2^19+...+2^3+2^2+2+1

=>2A-A=2^21-1

A=2^21-1

19 tháng 9 2016

a) Đặt \(A=2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2-2^1\)

\(\Rightarrow2A=2^{2017}-2^{2016}+2^{2015}-2^{2014}+...+2^3-2^2\)

\(\Rightarrow2A+A=\left(2^{2017}-2^{2015}+2^{2014}-2^{2013}+...+2^3-2^2\right)+\left(2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2+2^1\right)\)

\(\Rightarrow3A=2^{2017}+1\)

\(\Rightarrow A=\frac{2^{2017}+1}{3}\)

b) Đặt \(B=3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\)

\(\Rightarrow3B=3^{1001}-3^{1000}+3^{999}-3^{997}+...+3^3-3^2+3^1\)

\(\Rightarrow3B+B=\left(3^{1001}-3^{1000}+3^{999}-3^{998}+...+3^3-3^2+3^1\right)+\left(3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\right)\)

\(\Rightarrow4B=3^{1001}+3^0\)

\(\Rightarrow B=\frac{3^{1001}+1}{4}\)

 

19 tháng 9 2016

a) Đặt A = 22016 - 22015 + 22014 - 22013 + ... + 22 - 21

2A = 22017 - 22016 + 22015 - 22014 + ... + 23 - 22

2A + A = (22017 - 22016 + 22015 - 22014 + ... + 23 - 22) + (22016 - 22015 + 22014 - 22013 + ... + 22 - 21)

3A = 22017 - 21

3A = 22017 - 2

\(A=\frac{2^{2017}-2}{3}\)

b) lm tương tự câu a

29 tháng 6 2015

\(\left(\frac{1}{4}\right)^{44}.\left(\frac{1}{2}\right)^{12}=\left(\left(\frac{1}{2}\right)^2\right)^{44}.\left(\frac{1}{2}\right)^{12}=\left(\frac{1}{2}\right)^{88}.\left(\frac{1}{2}\right)^{12}=\left(\frac{1}{2}\right)^{100}\)

\(\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)

\(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(M=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(M=100+99+98+97+...+2+1\)

\(M=5050\)

\(N=\left(20^2+18^2+...+2^2\right)-\left(19^2+17^2+...+1^2\right)\)

\(N=20^2-19^2+18^2-17^2+...+2^2-1^2\)

\(N=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)

\(N=20+19+18+17+...+2+1\)

\(N=210\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Biểu thức không rõ ràng. Bạn xem lại.