K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A

Rút gọn: (3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
A=(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=2(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3-1)(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^2-1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^4-1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^8-1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^16-1)(3^16 + 1)(3^32 + 1)
2A=(3^32 - 1)(3^32 + 1)
2A=3^64-1
=>A=(3^64-1) /2

3 tháng 7 2019

Lời giải :

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{2}\cdot\left(3^{64}-1\right)\)

\(=\frac{3^{64}-1}{2}\)

25 tháng 9 2021

a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)

b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)

22 tháng 10 2020

a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)

Mà B = 20062

=> 20062 - 1 < 20062 

=> A < B

b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B =  (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)

                B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1

Mà C = 232

=> B < C 

c) Tương tự như câu b

15 tháng 10 2023

\(4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\cdot\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\)

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????

12 tháng 9 2021

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}.\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)=\dfrac{3^{32}}{2}-\dfrac{1}{2}\)

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

NA
Ngoc Anh Thai
Giáo viên
15 tháng 5 2021

\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)

Vậy \(A=\dfrac{3^{128}-1}{2}.\)

\(A=\dfrac{x^2-2x-3-x^2+x-1+4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3x}{\left(x+1\right)\left(x^2+x+1\right)}\)

`@` `\text {Ans}`

`\downarrow`

`A= (2x - 3)^2 - (2x + 3)^2`

`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`

`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`

`= -6 * 4x`

`= -24x`

16 tháng 8 2023

`A=(2x-3)^2-(2x+3)^2`

`A=(2x-3-2x-3)(2x-3+2x+3)`

`A=-6.4x=-24x`

a) Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3\left(x^2-1\right)\)

\(=4x-3x^2+3\)

\(=-3x^2+4x+3\)

b) Ta có: \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)

\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(64x^2-96x+36\right)+17\)

\(=5x^2-20-32x^2+48x-16+17\)

\(=-27x^2+48x-19\)