Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
1)
a. \(\sqrt{\dfrac{25}{7}}.\sqrt{\dfrac{7}{9}}=\sqrt{\dfrac{25.7}{7.9}}=\sqrt{\dfrac{25}{9}}=\dfrac{5}{3}\)
b. \(\left(\sqrt{\dfrac{9}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{2}\right).\sqrt{2}=3+1-2=2\)
c. \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=4-12+10=2\)
d. \(\left(\sqrt{\dfrac{2}{3}}-\sqrt{\dfrac{3}{2}}\right)^2=\dfrac{2}{3}+\dfrac{3}{2}-2\sqrt{\dfrac{2}{3}.\dfrac{3}{2}}=\dfrac{1}{6}\)
2)
a. \(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b. \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
c. \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{5-2\sqrt{5}+1}=1-\sqrt{\left(\sqrt{5}-1\right)^2}=1-\sqrt{5}+1=2-\sqrt{5}\)
d. \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)
3. \(a.A=x^2+2x+16=\left(\sqrt{2}-1\right)^2+2.\left(\sqrt{2}-1\right)+16=2-2\sqrt{2}+1+2\sqrt{2}-2+16=17\)
\(b.B=x^2+12x-14=\left(5\sqrt{2}-6\right)^2+12.\left(5\sqrt{2}-6\right)-14=50+36-60\sqrt{2}+60\sqrt{2}-72-14=0\)
Help me nha @Phùng Khánh Linh@Nhã Doanh@Liana@Yukru Cảm ơn trước nhé
a) điều kiện xác định \(x-2\ge0vàx^2-4x+3\ge0\)
\(pt\Leftrightarrow x^2-4x+3=x-2\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{2}\\x=\dfrac{5-\sqrt{5}}{2}\left(L\right)\end{matrix}\right.\) bạn giải nó bằng cách giải den ta nha .
vậy \(x=\dfrac{5+\sqrt{5}}{2}\)
b) điều kiện xác định : \(x\ge1\)
đặc \(\sqrt{x-1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2\left(\dfrac{t}{2}-3\right)=\dfrac{2.2t}{3}-\dfrac{1}{3}\) giải phương trình này rồi thế ngược lại là xong
c) điều kiện xác định : \(x\ge\dfrac{7}{9}\)
\(pt\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\) vậy \(x=6\)
d) câu cuối chờ nhát h mk chưa nghỉ ra
d) Ta có pt \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}=0\)
\(\Leftrightarrow4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3-2\sqrt{2x-3}+1}\Leftrightarrow4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}-1\right|\)
Đặt \(\sqrt{2x-3}=a\left(a\ge0\right),pt\Leftrightarrow4+\left|a-3\right|=\left|a-1\right|\)
xét \(a\ge3,pt\Leftrightarrow4+a-3=a-1\Leftrightarrow0a=1\left(VN\right)\)
xét \(a\le1.pt\Leftrightarrow4+3-a=1-a\Leftrightarrow0a=6\left(VN\right)\)
xét \(3>x>1,pt\Leftrightarrow4+3-a=a-1\Leftrightarrow a=1\)(k thỏa mãn )
=> pt vô nghiệm !
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...
Câu 3
a, ĐKXĐ: x>0, x\(\ne\)4
M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:
M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)
= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)
= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)
Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)
c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)
<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)
Vì 2>0 <=> \(\sqrt{x}-2< 0\)
<=> \(\sqrt{x}< 2\)
<=> x<4
Vậy để M<1 thì 0<x<4
<=>
Câu 2
a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))
<=> \(\sqrt{3x+2}=\sqrt{25}\)
<=> 3x+2=25
<=> 3x= 23
<=> x=\(\dfrac{23}{3}\)
Vậy S= \(\left\{\dfrac{23}{3}\right\}\)
2. Ta có : 5-\(\sqrt{8}\)=\(\sqrt{25}-\sqrt{8}\)>=\(\sqrt{25}-\sqrt{9}=5-3=2=\sqrt{4}\)
Ta thấy \(\sqrt{4}>\sqrt{3}\)
<=> 5-\(\sqrt{8}\)>\(\sqrt{3}\)
3) \(M^2=\dfrac{x^2}{4}-\dfrac{x}{6}+1\)
Tính Min của biểu thức vừa lập.Xong dễ dàng tìm MinM (khai căn )