K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(1,A=\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{x-\sqrt{x}+6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\\ A=\dfrac{\sqrt{x}-3+1+\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}-2+x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(2,\) Ta có \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\ge\left(0-1\right)\left(0-2\right)=2\\\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)\ge\left(0+2\right)\left(0-3\right)=-6\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\ge-\dfrac{2}{6}=-\dfrac{1}{3}\)

Vậy GTNN của \(A\) là \(-\dfrac{1}{3}\)

Dấu \("="\Leftrightarrow x=0\)

4 tháng 8 2021

a) ĐK: `a >0`

`P=(a^2+\sqrta)/(a-\sqrta+1)-(2a+\sqrta)/(\sqrta)+1`

`=(\sqrta(\sqrt(a^3)+1^3))/(a-\sqrta+1)-(\sqrta(2\sqrta+1))/(\sqrta)+1`

`=(\sqrta(\sqrta+1)(a-\sqrta+1))/(a-\sqrta+1)-(2\sqrta+1)+1`

`=a+\sqrta-2\sqrta-1+1`

`=a-\sqrta`

b) `P=a-\sqrta`

`=(\sqrta)^2-2.\sqrta .1/2 + (1/2)^2 -1/4`

`=(\sqrta-1/2)^2 -1/4 ≥ -1/4`

`=> P_(min) =-1/4 <=> a=1/4`

31 tháng 12 2017

C = a 2 − a a + a + 1 − a 2 + a a − a + 1 + a + 1         ( D K : a ≥ 0 ) C = a ( a ) 3 − 1 a + a + 1 − a ( a ) 3 + 1 a − a + 1 + a + 1 = a ( a − 1 ) − a ( a + 1 ) + a + 1 = a − a − a − a + a + 1 = a - 1 2

NV
27 tháng 7 2021

ĐKXĐ: \(x\ge0;x\ne1\)

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b.

\(P=\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-1+\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

Do \(\left\{{}\begin{matrix}2\sqrt{x}\ge0\\\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}\ge0\)

\(\Rightarrow P\ge-1\)

\(P_{min}=-1\) khi \(x=0\)

a) Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

AH
Akai Haruma
Giáo viên
14 tháng 4 2023

Lời giải:

a. 

$A=\frac{\sqrt{x}(5-\sqrt{x})-(\sqrt{x}+5)(\sqrt{x}+1)}{(\sqrt{x}+5)(5-\sqrt{x})}-\frac{5-9\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}$

$=\frac{-2x-10\sqrt{x}}{(\sqrt{x}+5)(5-\sqrt{x})}$

$=\frac{-2\sqrt{x}(\sqrt{x}+5)}{(\sqrt{x}+5)(5-\sqrt{x})}=\frac{2\sqrt{x}}{\sqrt{x}-5}$

b.

$A< 1\Leftrightarrow \frac{2\sqrt{x}}{\sqrt{x}-5}<1$

$\Leftrightarrow \frac{\sqrt{x}+5}{\sqrt{x}-5}<0$

$\Leftrightarrow \sqrt{x}-5<0$

$\Leftrightarrow 0\leq x< 25$

Kết hợp với đkxđ suy ra $0\leq x< 25$

AH
Akai Haruma
Giáo viên
14 tháng 4 2023

Bạn xem tại đây:

https://hoc24.vn/cau-hoi/adfracsqrtxsqrtx5-dfracsqrtx15-sqrtx-dfrac5-9sqrtxx-25-voi-xge0xne25rut-gon-a2-tim-tat-ca-cac-gia-tri-cua-x-de-a1.7900547231312