Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3.6+2.9.5-18.\left(-4\right)}{7.\left(-7\right)+12.\left(-7\right)+7}=\frac{18+18.5-18.\left(-4\right)}{\left(-7\right).\left(7+12\right)+7}\)
\(=\frac{18\left[1+5-\left(-4\right)\right]}{\left(-7\right).19+7}=\frac{18.10}{7.\left(-19\right)+7}\)
\(=\frac{180}{7\left[\left(-19\right)+1\right]}=\frac{180}{-126}=\frac{=10}{7}\)
Ta có : \(\left(5x-3\right)^2-\frac{1^2}{64}=0\)
\(\Leftrightarrow\left(5x-3\right)^2=\frac{1}{64}\)
\(\Leftrightarrow\left(5x-3\right)^2=\left(\frac{1}{8}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=\frac{1}{8}\\5x-3=-\frac{1}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=\frac{1}{8}+3\\5x=-\frac{1}{8}+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=\frac{25}{8}\\5x=\frac{23}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{25}{8}.\frac{1}{5}\\x=\frac{23}{8}.\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\frac{23}{40}\end{cases}}\)
b) 3x - 7.(5x-1) = 6 - 2.(4-3x)
=> 3x - 35x + 7 = 6 - 8 + 6x
=> 3x - 35x - 6x = 6-8 -7
-38x = -9
x = 9/38
a) \(\frac{3.6+2.9.5+18.\left(-4\right)}{7.\left(-7\right)+12.\left(-7\right)+7}\)=\(\frac{18+18.5+18.\left(-4\right)}{-7.\left(7+12-1\right)}\)=\(\frac{18.\left(1+5-4\right)}{-7.18}\)=\(\frac{18.2}{18.\left(-7\right)}=\frac{-2}{7}\)
b) \(\frac{2.3.4.5.6-3.4.5.6.7}{2.4.6-4.6.8}=\frac{3.4.5.6.\left(2-7\right)}{4.6.\left(2-8\right)}\)=\(\frac{3.5.\left(-5\right)}{\left(-6\right)}=\frac{-25}{-2}=\frac{25}{2}\)
a)\(\frac{3.6+2.9.5+18.\left(-4\right)}{7.\left(-7\right)+12.\left(-7\right)+7}\)
\(=\frac{18+18.5+18.\left(-4\right)}{7.\left(-7\right)+\left(-12\right).7+7}\)
\(=\frac{18.\left(1+5+-4\right)}{7.\left(-7+-12+1\right)}\)
\(=\frac{15.2}{7.\left(-18\right)}\)
\(=\frac{3.5.2}{7.2.3.-3}\)
\(=\frac{5}{-21}\)
b) \(\frac{2.3.4.5.6-3.4.5.6.7}{2.4.6-4.6.8}\)
\(=\frac{3.4.5.6.\left(2-7\right)}{4.6.\left(2-8\right)}\)
\(=\frac{3.4.5.6.\left(-5\right)}{4.6.\left(-3\right)}\)
\(=\frac{3.5.\left(-5\right)}{\left(-3\right)}\)
\(=\frac{-75}{\left(-3\right)}\)
\(=25\)