Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : C
Gọi giao điểm của OM và AB là I
Ta có M là điểm chính giữa cung nhỏ AB
=> OM vuông góc với AB và OM đi qua trung điểm của AB
=> \(AI=IB=\frac{AB}{2}=\frac{R\sqrt{2}}{2}\)
Xét tam giác OAI vuông tại I:
\(OA^2=OI^2+AI^2\)(py-ta-go)
=> \(OI^2=OA^2-AI^2=R^2-\left(\frac{R\sqrt{2}}{2}\right)^2=\frac{R^2}{2}\)
=> OI = \(\frac{R}{\sqrt{2}}=\frac{R\sqrt{2}}{2}\)
=> MI = \(R-\frac{R\sqrt{2}}{2}=\left(2-\sqrt{2}\right)\frac{R}{2}\)
Xét tam giác AIM có
\(AM^2=AI^2+IM^2\) (Py-ta-go)
=> \(AM^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[\left(2-\sqrt{2}\right).\frac{R}{2}\right]^2=\frac{R^2}{2}+\left(2-\sqrt{2}\right)^2.\frac{R^2}{4}\)
..................
Từ đó ra đáp án C
O M A B H
Xét tam giác OAH vuông tại H có
\(OH=\sqrt{R^2-\left(\frac{R\sqrt{2}}{2}\right)^2}=\frac{R}{\sqrt{2}}\)
=> \(HM=R-\frac{R}{\sqrt{2}}=R\left(1-\frac{1}{\sqrt{2}}\right)\)
Xét tam giác AHM vuông tại H có: \(AM^2=\left(\frac{R\sqrt{2}}{2}\right)^2-\left(R\frac{2-\sqrt{2}}{2}\right)=R^2\left(\frac{1}{2}+\frac{3-2\sqrt{2}}{2}\right)\)(Đl pitago)
Suy ra: AM = \(R\sqrt{2-\sqrt{2}}\)
=> Chọn C.
Chọn phương án (C).
Diện tích của nửa hình tròn có đường kính \(4R\) bằng \(2\pi R^2\)
Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)
Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.
Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))
Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)
\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)
Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC
\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.
Ta có: \(R=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}\)
\(=\left|x-1\right|+\left|x+1\right|\)
Ta có: \(-1\le x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x-1\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x-1\right|=1-x\end{matrix}\right.\)
\(\Leftrightarrow R=x+1+1-x=2\)
Câu 3:
\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
R= Đường ngang vạch như đoạn elip vậy Ta xét R=\(\eta\)