1 R

R=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

R= Đường ngang vạch như đoạn elip vậy Ta xét R=\(\eta\)

2 tháng 7 2020

Đáp án : C

Gọi giao điểm của OM và AB là I

Ta có M là điểm chính giữa cung nhỏ AB

=> OM vuông góc với AB và OM đi qua trung điểm của AB

=> \(AI=IB=\frac{AB}{2}=\frac{R\sqrt{2}}{2}\)

Xét tam giác OAI vuông tại I:

\(OA^2=OI^2+AI^2\)(py-ta-go)

=> \(OI^2=OA^2-AI^2=R^2-\left(\frac{R\sqrt{2}}{2}\right)^2=\frac{R^2}{2}\)

=> OI = \(\frac{R}{\sqrt{2}}=\frac{R\sqrt{2}}{2}\)

=> MI = \(R-\frac{R\sqrt{2}}{2}=\left(2-\sqrt{2}\right)\frac{R}{2}\)

Xét tam giác AIM có

\(AM^2=AI^2+IM^2\) (Py-ta-go)

=> \(AM^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[\left(2-\sqrt{2}\right).\frac{R}{2}\right]^2=\frac{R^2}{2}+\left(2-\sqrt{2}\right)^2.\frac{R^2}{4}\)

..................

Từ đó ra đáp án C

2 tháng 7 2020

O M A B H

Xét tam giác OAH vuông tại H có

\(OH=\sqrt{R^2-\left(\frac{R\sqrt{2}}{2}\right)^2}=\frac{R}{\sqrt{2}}\)

=> \(HM=R-\frac{R}{\sqrt{2}}=R\left(1-\frac{1}{\sqrt{2}}\right)\)

Xét tam giác AHM vuông tại H có: \(AM^2=\left(\frac{R\sqrt{2}}{2}\right)^2-\left(R\frac{2-\sqrt{2}}{2}\right)=R^2\left(\frac{1}{2}+\frac{3-2\sqrt{2}}{2}\right)\)(Đl pitago)

Suy ra: AM = \(R\sqrt{2-\sqrt{2}}\)

=> Chọn C.

2 tháng 6 2017

Chọn phương án (C).

Diện tích của nửa hình tròn có đường kính \(4R\) bằng \(2\pi R^2\)

19 tháng 1 2022

Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)

Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.

Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))

Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)

\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)

Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC

\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.

Ta có: \(R=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}\)

\(=\left|x-1\right|+\left|x+1\right|\)

Ta có: \(-1\le x\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x-1\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x-1\right|=1-x\end{matrix}\right.\)

\(\Leftrightarrow R=x+1+1-x=2\)

Câu 3:

\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16