\(\frac{1}{x1}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

\(2x^2-3x-24=0\)

\(\Delta=9-4.\left(-24\right).2=201>0\) => pt có 2 n0 pb

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{3}{2}\\x_1x_2=-12\end{matrix}\right.\)

\(\Rightarrow M=\frac{x_1+x_2}{x_1x_2}=\frac{\frac{3}{2}}{-12}=-\frac{1}{8}\)

14 tháng 5 2020
https://i.imgur.com/HpVzZDM.jpg
16 tháng 1 2021

Hình như đề thiếu, pt: \(x^2-\left(m+1\right)x+m-2=0\)

Phương trình đã cho có nghiệm khi \(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2-2m+9>0\)

\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị m

Định lí Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m-2\end{matrix}\right.\)

a, Theo giả thiết ta có: \(x_1^2+x_2^2=100\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=100\)

\(\Leftrightarrow\left(m+1\right)^2-2\left(m-2\right)=100\)

\(\Leftrightarrow m^2+2m+1-2m+4=100\)

\(\Leftrightarrow m^2=95\)

\(\Leftrightarrow m=\sqrt{95}\)

b, \(P=\left|x_1-x_2\right|\)

\(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m+1\right)^2-4\left(m-2\right)\)

\(=m^2-2m+9=\left(m-1\right)^2+8\ge8\)

\(\Rightarrow P=\left|x_1-x_2\right|\ge2\sqrt{2}\)

\(minP=2\sqrt{2}\Leftrightarrow m=1\)

7 tháng 5 2020

1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)

\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)

\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)

\(\Rightarrow-1< m\le2\)

7 tháng 5 2020

Câu 1b, 2, 3 làm tương tự

Câu 4:

\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)

\(\Rightarrow m>-1\)

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

7 tháng 12 2017

Hỏi đáp Toán

7 tháng 12 2017

câu b tương tự

câu c chia 2 thợp :th1 m=0

TH2 m≠0 rồi cứ triển thôi

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)