\(\frac{x}{3}+\frac{x-1}{2}\)∠\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)

\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)

\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)

\(\Rightarrow-1< m\le2\)

7 tháng 5 2020

Câu 1b, 2, 3 làm tương tự

Câu 4:

\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)

\(\Rightarrow m>-1\)

14 tháng 1 2020

để pt có 2 nghiệm phân biệt thì: đenta > 0 

mà ddeenta = m2 - 6m - 7 > 0  

giải ra ta đc: m<-1 hay m>7 (1)

áp dụng hệ thức vi-et đc x1 + x2 = m-1  và x1.x2= m+2 

kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3

bđt trên (=) (x12+x22)/x12.x22  - 1  > 0 

thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2   và m<-7/16

kết hợp vs (1) =) m<-1 và m khác -2

7 tháng 12 2017

Hỏi đáp Toán

7 tháng 12 2017

câu b tương tự

câu c chia 2 thợp :th1 m=0

TH2 m≠0 rồi cứ triển thôi

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

NV
26 tháng 10 2019

a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)

b/

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)

\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)

\(\Leftrightarrow\left|x+2\right|-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)

c/

\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)

\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)

Đặt \(\frac{\left|x-2\right|}{x-1}=a\)

\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)

e/ ĐKXĐ: ...

Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)

\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)