K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

1)

\(x^3-x^2z+x^2y-xyz=\left(x^3+x^2y\right)-\left(x^2z+xyz\right)\\ =x^2\left(x+y\right)-xz\left(x+y\right)=\left(x+y\right)\left(x^2-xz\right)\\ =x\left(x+y\right)\left(x-z\right)\)

2)

\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\\ \: \Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\\ \Leftrightarrow16x=28\Leftrightarrow x=\dfrac{28}{16}=\dfrac{7}{4}\)

3)

gọi bốn số liên tiếp là:

x+1; x+2; x+3; x+4 với x là các số tự nhiên

theo đề bài, ta có:

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\\ =\left(x^2+5x+5\right)^2-1^2+1=\left(x^2+5x+5\right)^2\)

vậy tích của 4 số tự nhiên liên tiếp cộng với 1 là 1 số chính phương

4)

\(a+b=9\Rightarrow a^2+2ab+b^2=9^2=81\\ \Rightarrow a^2+b^2+40=81\\\Rightarrow a^2+b^2=41\\ \Rightarrow a^2+b^2-2ab=41-2.20=1\\ \Leftrightarrow\left(a-b\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)

vì a < b => a - b < 0

khi đó a - b= - 1

\(\Rightarrow\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)

26 tháng 10 2017

Nốt bài 5 đi bạn khocroi

22 tháng 8 2018

1)   bạn ktra lại đề

2)  \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)

3) 

a)  \(x^2+x-2=0\)

<=>  \(\left(x-1\right)\left(x+2\right)=0\)

<=>  \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy...

b)  \(3x^2+5x-8=0\)

<=>  \(\left(x-1\right)\left(3x+8\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

Vậy...

22 tháng 8 2018

2) \(x^6+2x^5+x^4-2x^3-2x^2+1\)

\(=\left(x^6+2x^5+x^4\right)-\left(2x^3+2x^2\right)+1\)

\(=\left(x^3+x^2\right)^2-2\left(x^3+x^2\right)+1\)

\(=\left(x^3+x^2-1\right)^2\)

1 tháng 11 2018

Bài 1:

a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)

b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]

= 2xy.(x-y-1).(x+y+1)

1 tháng 11 2018

c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2

= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)

Bài 2:

a) (x+2).(x^2-2x+4) - (x^3+2x) = 0

x^3 + 8 - x^3 - 2x = 0

8 - 2x = 0

x = 4

b) x^2 - 2x - 8 = 0

x^2 +2x - 4x - 8 = 0

x.(x+2) - 4.(x+2) = 0

(x+2).(x-4) = 0

...

bn tự làm tiếp nha

1.Hãy phân tích các đa thức sau thành nhân tửa) x2−2xy+x3yb) 7x2y2+14xy2−212yc) 10x2y+25x3+xy2 2.Chứng minh với mọi số nguyên nn , (2n+1)3−(2n+1) chia hết cho 24. 3.Hãy phân tích các đa thức sau thành nhân tửa) x(x−2)+2(2−x)b) 4(x+1)3−x−1c) 5x(x−3)+(x−3)2−(x−3) 4.Tính giá trị biểu thức: A=x3−2x2y+xy2 với =117,y=17.5.Tìm xxa) 4x(x+1)=x+1b) 2x(x2+1)−2x2(x+1)=0 6.Chứng minh bình phương của 1 số nguyên...
Đọc tiếp

1.Hãy phân tích các đa thức sau thành nhân tử
a) x2−2xy+x3y
b) 7x2y2+14xy2−212y
c) 10x2y+25x3+xy2

 

2.Chứng minh với mọi số nguyên nn , (2n+1)3−(2n+1) chia hết cho 24.

 

3.Hãy phân tích các đa thức sau thành nhân tử
a) x(x−2)+2(2−x)
b) 4(x+1)3−x−1
c) 5x(x−3)+(x−3)2−(x−3)

 

4.Tính giá trị biểu thức: A=x3−2x2y+xy2 với =117,y=17.

5.Tìm xx
a) 4x(x+1)=x+1
b) 2x(x2+1)−2x2(x+1)=0

 

6.Chứng minh bình phương của 1 số nguyên lẻ luôn chia 8 dư 1.

 

7.Tính nhanh: 81.67+81.44−81.11

 

8.Chứng minh rằng các biểu thức sau luôn nhận giá trị không âm với mọi giá trị của biến
a) x(x+2)+2x+4
b) 3x(x+1)+3(x+1)+5

 

9.Chứng minh đẳng thức
a) (x−2)2+(x−2)=(x−1)2−(x−1)
b) (x3−27)−9(x−3)=x(x2−9)

 

10.Tìm 3 số nguyên liên tiếp biết rằng hiệu giữa tích 3 số với lập phương số ở giữa bằng 1

 

3
9 tháng 8 2020

Giúp mk!! 

9 tháng 8 2020

a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)

b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)

c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0
6 tháng 7 2018
https://i.imgur.com/7S8xTCo.jpg
6 tháng 7 2018
https://i.imgur.com/2rCz0qH.jpg
4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)