Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng số tiền mẹ Việt rút ra được là:
\(T = 2\;000\;000\;000.{(1 + 7\% )^3} = 2\;450\;086\;000\)(đồng)
b) Với số tiền nêu trên, mẹ Việt mua được căn hộ chung cư với diện tích là:
\(2\;450\;086\;000:30\;626\;075 = 80\)(mét vuông)
TRAO ĐỔI
Để mua được căn hộ 100 mét vuông, cần số tiền là:
\(30\;626\;075.100 = 3\;062\;607\;500\)(đồng)
Gọi A là số tiền gửi vào (đơn vị đồng).
Ở thời điểm tháng 1 năm 2021, số tiền thu được là:
\(\begin{array}{l}T = A.{(1 + 7\% )^3} = 3\;062\;607\;500\\ \Rightarrow A = 3\;062\;607\;500:{(1 + 7\% )^3} = 2\;500\;000\;000\end{array}\)
Vậy để mua được căn hộ 100 mét vuông ở thời điểm tháng 1 năm 2021, mẹ Việt cần phải gửi tiết kiệm từ tháng 1 năm 2018 số tiền là 2 500 000 000 đồng.
Giải:
Gọi số tiền ông Sáu gửi ban đầu là x.
Theo đề bài ta có:
Số tiền lãi sau 1 năm ông Sáu nhận được là : 0,06x (đồng)
Số tiền lãi có được 1 năm của ông Sáu là : x + 0,06x = 1,06x (đồng)
Số tiền lãi năm thứ 2 ông Sáu nhận được là : 1,06x. 0,06 = 0,0636x (đồng)
Do vậy, số tiền tổng cộng sau 2 năm ông Sáu nhận được là : 1,06x + 0,0636x = 1,1236x (đồng)
Mặt khác: 1,1236x = 112360000 nên x = 100000000(đồng) hay 100 triệu đồng
Vậy ban đầu ông Sáu đã gửi 100 triệu đồng.
Tổng % lãi suất trong 2 năm là :
6% . 2 = 12%
Số tiền lãi trong 2 năm là :
112360000 . 12% = 13483200
=> Tiền ông Sáu gửi là :
112360000 - 13483200 = 98876800
a) \(A=\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2-\sqrt{3}}{1+\sqrt{3}+1}+\frac{2+\sqrt{3}}{1-\sqrt{3}+1}\)
\(=\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{2+\sqrt{3}}{2-\sqrt{3}}\)
\(=\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{4-4\sqrt{3}+3+4+4\sqrt{3}+3}{4-3}\)
\(=14\)
a) A = \(\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}\) = \(\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3.1+1}}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3.1+1}}}\) = \(\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3+1}\right)^2}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3-1}\right)^2}}\) = \(\frac{2-\sqrt{3}}{1+\sqrt{3+1}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{3+1}}\) = \(\frac{2-\sqrt{3}}{2+\sqrt{3}}\) + \(\frac{2+\sqrt{3}}{2-\sqrt{3}}\) = \(\frac{\left(4-4\sqrt{3+3}\right)+\left(4+4\sqrt{3+3}\right)}{4-3}\) = \(\frac{14}{1}\) = 1
TRẢ LỜI:
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x,y,z là số đồng tiền các loại mệnh giá 2000 đồng, 1000 đồng và 500 đồng. (\(\left(x,y,z\in N^{\circledast}\right)\).
Theo giả thiết ta có: \(x+y+z=1450\) (đồng).
Do tổng số tiền cần đổi là 1 500 000 đồng nên:
\(2000x+1000y+500z=1500000\)
Do số tiền xu loại 1 000 đồng bằng hai lần hiệu của số tiền xu loại 500 đồng với số tiền xu loại 2000 đồng nên:\(y=2\left(z-x\right)\)
Vậy ta có hệ:
\(\left\{{}\begin{matrix}x+y+z=1450\\2000x+1000y+500z=1500000\\y=2\left(z-x\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=350\\y=500\\z=600\end{matrix}\right.\)
vậy số tiền loại 2000 đồng là 350 tờ; số tiền loại 1000 đồng là 500 tờ; số tiền loại 600 đồng là 600 tờ.
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình:
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được:
3 x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7 x + 4 y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được:
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Cửa hàng đó có số lít nước mắm là :
123,5 . 9,5% = 1300 ( lít )
Đáp số : 1300 lít nước mắm
Có 2 cách :
Cách 1:
Coi số lít nước mắm cửa hàng có là 100%.
Lúc đầu, cửa hàng có số lít nước mắm là:
123,5 : 9,5 100 = 1300 (lít)
Đáp số: 1300 lít.
Cách 2:
Coi số lít nước mắm cửa hàng có là 100%.
Số % lít nước mắm cửa hàng còn lại là:
100% - 9,5 = 90,5 %.
Cửa hàng còn lại số lít nước mắm là:
123,5 : 9,5 90,5 = 1176,5 (lít)
Lúc đầu, cửa hàng có số lít nước mắm là:
1176,5 + 123,5 = 1300 (lít)
Đáp số: 1300 lít.
Bài 1: Cô bán hàng chia được số chai là : \(\frac{\left(20+28\right)}{0,75}=64\left(chai\right)\)
Bai 2: Sau 1 tháng cả số tiền gửi và tiền lãi là: \(80000000+80000000.0,5\%=80400000\left(đồng\right)\)
Vậy..........................