Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có
MA=MC(M là trung điểm của AC)
\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)
Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=CH(hai cạnh tương ứng)
Xét tứ giác AKCH có
AK//CH(\(\perp AC\))
AK=CH(cmt)
Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
TH1: nếu tam giác ABC vuông tại A . bạn tự vẽ hình nhé
dễ thấy tứ giác ADME là hình chữ nhật .=> diện tích ADME=EM.MD
diện tích tam giác ABC=S=(AC.AB)/2
mặt khác ta có AC=AE+EC\(\ge\sqrt{AE\cdot EC}\)
\(AB=AD+DB\ge2\sqrt{AD\cdot DB}\)
==>\(AC\cdot AB\ge4\sqrt{AE\cdot EC\cdot AD\cdot DB}\)
ta có tam giác CEM đồng dạng tam giác MDB(g.g)=>\(\frac{CE}{MD}=\frac{EM}{DB}\)
=> CE.DB=EM.MD mà AE=MD ;AD=EM
do đó AE.EC.AD.DB=\(\left(EM\cdot MD\right)^2\)
=>2.diện tích ABC\(\ge\) diện tích tứ giác ADME==>diện tích ADME\(\le\frac{S}{2}\)
do đó MAX diện tích ADME=S/2 hay MAX diện tích MDE=S/4
dấu'=' xảy ra khi AE=EC và DA=DB hay M là trung điểm của BC