Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACB và ΔEBC có
\(\widehat{ACB}=\widehat{EBC}\)
BC chung
\(\widehat{ABC}=\widehat{ECB}\)
Do đó: ΔACB=ΔEBC
b: Ta có: ΔACB=ΔEBC
nên AC=EB
=>BE=BD
hay ΔBED cân tại B
c: Ta có: ΔBED cân tại B
nên \(\widehat{BED}=\widehat{BDC}\)
=>\(\widehat{BDC}=\widehat{ACD}\)
d: Xét ΔACD và ΔBDC có
AC=BD
\(\widehat{ACD}=\widehat{BDC}\)
CD chung
DO đó: ΔACD=ΔBDC
e: Ta có: ΔACD=ΔBDC
nên \(\widehat{DAC}=\widehat{DBC}\)
f: Ta có: ΔACD=ΔBDC
nên \(\widehat{ADC}=\widehat{BCD}\)
=>ABCD là hình thang cân
b ) Xét tam giác BMD và tam giác CNE , có :
BD = CE ( gt)
góc MBD = góc ABC
góc NCE = góc ACB
mà góc ABC = góc ACB nên góc MBD = góc NCE
=> tam giác BMD = tam giác CNE ( cạnh huyền góc nhọn )
=> DM = EN ( 2 cạnh tương ứng )
c ) Xét tam giác MBA và tam giác NCA , có :
AB=AC ( gt)
MB = NC ( tam giác BMD = CNE )
180 - góc ABC = góc ABM
180 - góc ACB = góc ACN
mà góc ABC = góc ACB nên góc ABM = góc ACN
=> tam giác MBA = tam giác NCA (c.g.c)
=> AM = AN ( 2 cạnh tương ứng)
=> tam giác AMN cân
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông
a) Ta có: \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{4+3+2+1}=\frac{360}{10}=36\)
\(\Rightarrow\widehat{A}=144^0;\widehat{B}=108^0;\widehat{C}=72^0;\widehat{D}=36^0\)
A