K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 2 2020

a/ - Với \(x\le-3\Rightarrow\left\{{}\begin{matrix}VP< 0\\VT\ge0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge5\) hai vế đều ko âm, bình phương:

\(x^2-8x+16\ge x^2-2x-15\)

\(\Leftrightarrow6x\le31\Rightarrow x\le\frac{31}{6}\)

Vậy nghiệm của BPT là \(5\le x\le\frac{31}{6}\)

b/ - Với \(x\le-14\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn thỏa mãn

- Với \(x\ge0\) , bình phương 2 vế:

\(x^2+14x>x^2+12x+36\)

\(\Leftrightarrow2x>36\Rightarrow x>18\)

Vậy nghiệm của BPT là \(\left\{{}\begin{matrix}x>18\\x\le-14\end{matrix}\right.\)

NV
24 tháng 2 2020

c/ \(\left(x-3\right)\left[x+3-\sqrt{x^2-4}\right]\le0\)

- Với \(x=3\) thỏa mãn

- Với \(x>3\Rightarrow x+3\le\sqrt{x^2-4}\)

\(\Leftrightarrow x^2+6x+9\le x^2-4\Rightarrow x\le-\frac{13}{6}\) (vô nghiệm)

- Với \(x< 3\Rightarrow x+3\ge\sqrt{x^2-4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+6x+9\ge x^2-4\end{matrix}\right.\) \(\Rightarrow-3\le x\le-\frac{13}{6}\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=3\\-3\le x\le-\frac{13}{6}\end{matrix}\right.\)

d/ Đặt \(\sqrt{5x^2+10x+1}=t\ge0\Rightarrow x^2+2x=\frac{t^2-1}{5}\)

\(t\ge7-\frac{t^2-1}{5}\Leftrightarrow t^2+5t-36\ge0\) \(\Rightarrow t\ge4\)

\(\Rightarrow\sqrt{5x^2+10x+1}\ge4\)

\(\Leftrightarrow5x^2+10x-15\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0$

BPT $\Leftrightarrow \sqrt{x+2}(\sqrt{2}-1)\leq \sqrt{x}$

$\Leftrightarrow (3-2\sqrt{2})(x+2)\leq x$

$\Leftrightarrow x(2-2\sqrt{2})\leq 2(2\sqrt{2}-3)$

$\Leftrightarrow x\geq \frac{2(2\sqrt{2}-3)}{2-2\sqrt{2}}=-1+\sqrt{2}$

Vậy BPT có nghiệm $x\geq -1+\sqrt{2}$

b) ĐK: $x\geq 2$ hoặc $x\leq -2$

BPT $\Leftrightarrow (x-5)\sqrt{x^2-4}-(x-5)(x+5)\leq 0$

$\Leftrightarrow (x-5)[\sqrt{x^2-4}-(x+5)]\leq 0$Ta có 2 TH:

TH1: 

\(\left\{\begin{matrix} x-5\geq 0\\ \sqrt{x^2-4}-(x+5)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ \sqrt{x^2-4}\leq x+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ x^2-4\leq x^2+10x+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ 29\leq 10x\end{matrix}\right.\Leftrightarrow x\geq 5\)

TH2: 

\(\left\{\begin{matrix} x-5\leq 0\\ \sqrt{x^2-4}-(x+5)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 5\\ x^2-4\geq x^2+10x+25 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ -29\geq 10x\end{matrix}\right.\)

 \(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ x\leq \frac{-29}{10}\end{matrix}\right.\Leftrightarrow x\leq \frac{-29}{10}\)

Kết hợp đkxđ suy ra $x\geq 5$ hoặc $x\leq \frac{-29}{10}$

NV
15 tháng 7 2020

e/

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)

\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)

\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)

BPT trở thành:

\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)

\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)

\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x\ge4x+4\)

\(\Leftrightarrow x^2-6x-4\ge0\)

\(\Rightarrow x\ge3+\sqrt{13}\)

NV
15 tháng 7 2020

d/

ĐKXĐ: \(x\ge-1\)

\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow4a^2-b^2=4x^2-5x+3\)

BPT trở thành:

\(4a^2+3ab-b^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)

\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)

\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow16x^2+16x+4\ge x+1\)

\(\Leftrightarrow16x^2+15x+3\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)

1 tháng 5 2021

a, ĐKXĐ : \(D=R\)

BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)

Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)

BPTTT : \(5\sqrt{a+24}>a\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)

\(\Leftrightarrow-24\le a< 40\)

- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)

\(\Leftrightarrow-9< x< 4\)

Vậy ....

 

1 tháng 5 2021

b, ĐKXĐ : \(x>0\)

BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)

- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)

BPTTT : \(2a\le a^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)

\(\Leftrightarrow a\ge2\)

\(\Leftrightarrow a^2\ge4\)

- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)

\(\Leftrightarrow4x^2-12x+1\ge0\)

\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)

Vậy ...