\(m\left(2-n\right)+\left(m-1\right)^2>2x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)

\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)

\(\Leftrightarrow-10x^2>5\)

\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)

Vậy bất phương trình đã cho vô nghiệm.

8 tháng 4 2018

h)

\(\dfrac{x+5}{x+7}-1>0\)

\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)

\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)

\(\Leftrightarrow\dfrac{-2}{x+7}>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

g)

\(\dfrac{4-x}{3x+5}\ge0\)

* TH1:

\(4-x\ge0\)\(3x+5>0\)

\(\Leftrightarrow x\le4\)\(x>\dfrac{-5}{3}\)

* TH2:

\(4-x\le0\)\(3x+5< 0\)

\(\Leftrightarrow x\ge4\)\(x< \dfrac{-5}{3}\) ( loại)

Vậy: \(-\dfrac{5}{3}< x\le4\)

9 tháng 5 2017

Dễ hiểu mà bạn mấy cái dạng này mk gặp nhiều lần rồi

Ta có:\(\left(2x+1\right)\left(x-1\right)-2x^2+mx+m-2=0\)

     Nhân ra thôi mà bạn:\(2x^2-2x+x-1-2x^2+mx+m-2=0\)

                      \(\Rightarrow-x-3+mx+m=0\)(Sao ko giống cái ở trên vậy hay là bạn giải sai kiểm tra lại đi rồi hãy nói) 

9 tháng 5 2017

bạn có cần phải kiêu căng vậy không? là sách giải bạn nhé :)))

6 tháng 7 2018

\(mx.\left(x+1\right)>mx.\left(x+m\right)+m^2-1\Leftrightarrow mx^2+mx>mx^2+m^2x+m^2-1\Leftrightarrow mx>m^2x+m^2-1\\ \).

\(\Leftrightarrow mx-m^2x-m^2+1>0\Leftrightarrow mx.\left(1-m\right)+\left(1-m\right).\left(1+m\right)>0\)

\(\Leftrightarrow\left(1-m\right).\left(mx+1+m\right)>0\)

+ Nếu \(m>1\Rightarrow1-m< 0\Rightarrow mx+1+m< 0\Leftrightarrow m.\left(x+1\right)< -1\)

   Mà \(m>1\Rightarrow x+1< -\frac{1}{1}=-1\Leftrightarrow x< -2\)

+ Nếu m<1 thì làm tiếp

16 tháng 4 2017

a ) \(\dfrac{\left(x-3\right)^2}{3}-\dfrac{\left(2x-1\right)^2}{12}\le x\)

\(\Leftrightarrow4\left(x-3\right)^2-\left(2x-1\right)^2\le12x\)

\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\le0\)

\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-12x\le0\)

\(\Leftrightarrow-36x\le-35\)

\(\Leftrightarrow x\ge\dfrac{35}{36}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{35}{36}\).

b ) \(2+\dfrac{3\left(x+1\right)}{3}< 3-\dfrac{x-1}{4}\)

\(\Leftrightarrow2+x+1< 3-\dfrac{x-1}{4}\)

\(\Leftrightarrow x+3< 3-\dfrac{x-1}{4}\)

\(\Leftrightarrow4\left(x+3\right)< 12-x+1\)

\(\Leftrightarrow4x+12+x< 13\)

\(\Leftrightarrow5x< 13-12\)

\(\Leftrightarrow5x< 1\)

\(\Leftrightarrow x< \dfrac{1}{5}\)

Vậy bất phương trình có nghiệm \(x< \dfrac{1}{5}\)

20 tháng 5 2018

1.

|x-9|=2x+5

x<9; x-9=-2x-5

3x=4=>x=4/3(n)

x≥9; x-9=2x+5=> x=-14(l)

2.a

A=2x-5≥0<=>2x≥5; x≥5/2

21 tháng 5 2018

1. a) / x - 9 / = 2x + 5

Do : / x - 9 / ≥ 0 ∀x

⇒2x + 5 ≥ 0

⇔ x ≥ \(\dfrac{-5}{2}\)

Bình phương cả hai vế của phương trình , ta được :

( x - 9)2 = ( 2x + 5)2

⇔ ( x - 9)2 - ( 2x + 5)2 = 0

⇔ ( x - 9 - 2x - 5)( x - 9 + 2x + 5) = 0

⇔ ( - x - 14)( 3x - 4) = 0

⇔ x = - 14 ( KTM) hoặc : x = \(\dfrac{4}{3}\) ( TM)

KL....

b) Mạn phép làm luôn , ko chép lại đề :

\(\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-5}{\left(x-3\right)\left(x+3\right)}\) ( x # 3 ; x # - 3)

⇔ 5x + 15 + 4x - 12 = x - 5

⇔ 9x + 3 = x - 5

⇔ 8x = - 8

⇔ x = -1 ( TM)

KL....

17 tháng 1 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\) ( Chữa đề nhé.)

a) \(ĐKXĐ:x\ne-3;x\ne2\)

\(\text{Với }x\ne-3;x\ne2,\text{ ta có: }A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\\ =\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\\ =\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x-4}{x-2}\\ \text{Vậy }A=\dfrac{x-4}{x-2}\text{ với }x\ne-3;x\ne2\)

b) Lập bảng xét dấu:

x x-4 x-2 x-4 2 4 0 0 x-2 _ _ + _ + + 0 + _ +

\(\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)

Vậy để \(A>0\) thì \(x< 2\) hoặc \(x>4\)

c) \(\text{Với }x\ne-3;x\ne2\)

\(\text{Ta có : }A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}\\ =\dfrac{x-2}{x-2}-\dfrac{2}{x-2}=1-\dfrac{2}{x-2}\)

\(\Rightarrow\) Để A nhận giá trị nguyên

thì \(\Rightarrow\dfrac{2}{x-2}\in Z\)

\(\Rightarrow2⋮x-2\\ \Rightarrow x-2\inƯ_{\left(2\right)}\)

\(Ư_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\left(TM\right)\) \(1\left(TM\right)\) \(3\left(TM\right)\) \(4\left(TM\right)\)

\(\Rightarrow x\in\left\{-2;-1;1;2\right\}\)

Vậy với \(x\in\left\{-2;-1;1;2\right\}\)

thì \(A\in Z\)

17 tháng 1 2018

Câu 2:

a) \(ĐKXĐ:x\ne\dfrac{3}{2};x\ne1\)

\(\text{Với }x\ne\dfrac{3}{2};x\ne1,\text{ ta có : }B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\\ =\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}\right]:\left(\dfrac{3\left(1-x\right)}{1-x}+\dfrac{2}{1-x}\right)\\ =\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3-3x+2}{\left(1-x\right)}\\ =\dfrac{\left(-3x+5\right)\cdot\left(1-x\right)}{\left(2x-3\right)\left(x-1\right)\cdot\left(-3x+5\right)}\\ =-\dfrac{1}{2x-3}\)

Vậy \(B=-\dfrac{1}{2x-3}\) với \(x\ne\dfrac{3}{2};x\ne1\)

b) \(\text{Với }x\ne\dfrac{3}{2};x\ne1\)

Để \(B=\dfrac{1}{x^2}\)

\(\text{thì }\Rightarrow\dfrac{-1}{2x-3}=\dfrac{1}{x^2}\\ \Rightarrow2x-3=-x^2\\ \Leftrightarrow2x-3+x^2=0\\ \Leftrightarrow x^2-3x+x-3=0\\ \Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\left(TM\right)\)

Vậy với \(x=-1;x=3\) thì \(B=\dfrac{1}{x^2}\)