Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{96}.\sqrt{125}\)
\(\sqrt{16.6}\sqrt{25.5}\)
\(4.5\sqrt{6.5}\)
\(20\sqrt{30}\)
\(b,\sqrt{a^4b^5}\)
\(a^2b^2\sqrt{b}\)
\(c,\sqrt{a^6b^{11}}\)
\(a^3b^5\sqrt{b}\)
\(d,\sqrt{a^3\left(1-a\right)^4}\)
\(a\left(1-a\right)^2\sqrt{a}\)
a: \(=\sqrt{2^5\cdot3\cdot5^3}=2^2\cdot5\cdot\sqrt{2\cdot3\cdot5}=20\sqrt{30}\)
b: \(=a^2b^2\sqrt{b}\)
a) \(\sqrt{25\cdot96}=\sqrt{5^2\cdot2^5\cdot3}=\sqrt{5^2\cdot\left(2^2\right)^2\cdot2\cdot3}\)
\(=20\sqrt{6}\)
b) \(\sqrt{21\cdot75\cdot14}=\sqrt{2\cdot3^2\cdot5^2\cdot7^2}=105\sqrt{2}\)
c) \(y^2\sqrt{x^6\cdot y^8}=\sqrt{x^6\cdot y^4\cdot y^8}=\sqrt{\left(x^3\right)^2\cdot\left(y^6\right)^2}=x^3\cdot y^6\)
hì,giúp bn đc phần a thôi nha!!!
\(a,\sqrt{25.96}=\sqrt{25.16.6}=\sqrt{25}.\sqrt{16}.\sqrt{6}=5.4.\sqrt{6}=20\sqrt{6}\)
=.= hok tốt!!!
a) √54 = √9.6 = 3√6
b) √108 = √36.3 = 6√3
c) 0,1√20000 = 0,1√10000.2= 0,1.100√2 = 10√2
d) -0,05.√28800 = -0,05.√14400.2 = -0,05.120√2 = -6√2
e)√7.63.a2 = √7.7.9.a2 = 7.3|a| = 21|a|
a) Ta có: \(\sqrt{96}\cdot\sqrt{125}\)
\(=\sqrt{16}\cdot\sqrt{6}\cdot\sqrt{25}\cdot\sqrt{5}\)
\(=20\cdot\sqrt{30}\)
b) Ta có: \(\sqrt{a^4\cdot6^5}\)
\(=a^2\cdot36\cdot\sqrt{6}\)
c) Ta có: \(\sqrt{a^6\cdot b^{11}}\)
\(=\sqrt{a^6}\cdot\sqrt{b^{11}}\)
\(=\left|a^3\right|\cdot\left|b^5\right|\cdot\sqrt{b}\)
\(=a^3b^5\cdot\sqrt{b}\)
d) Ta có: \(\sqrt{a^3\left(1-a\right)^4}\)
\(=\sqrt{a^3}\cdot\sqrt{\left(1-a\right)^4}\)
\(=a\sqrt{a}\cdot\left(1-a\right)^2\)
a/ \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)
b/ \(\sqrt{a^6b^{11}}=a^3b^5\sqrt{b}\)
a/ \(0,1\sqrt{2.10000=0,1\sqrt{ }2.100^{ }2=0,1\cdot100\sqrt{ }2=10\sqrt{ }2}\)
b/ \(-0,05\sqrt{28800}=-0,05\sqrt{288\cdot100=-0,05\cdot10\sqrt{ }288=6\sqrt{ }2}\)
c/\(\sqrt{7\cdot63}a^2=\sqrt{7\cdot9\cdot7}a^2=21a^2\)
\(\sqrt{72a^{ }2b\sqrt{ }4=\sqrt{ }6\cdot9\left|\right|ab^{ }2=-3\sqrt{ }6ab^{ }2}\)
a)Ta có: \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)
\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)
Vì \(\sqrt{20}< \sqrt{50}\)
Nên \(2\sqrt{5}< 5\sqrt{2}\)
b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)
Vì \(\sqrt{117}< \sqrt{176}\)
Nên \(3\sqrt{13}< 4\sqrt{11}\)
c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)
\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)
Vì \(\sqrt{\frac{63}{16}}>1\)
\(\sqrt{\frac{4}{5}}< 1\)
Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)
Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)
=\(\sqrt{16\cdot6\cdot25\cdot5}\)
=\(\sqrt{4^2\cdot6\cdot5^2\cdot5}\)
=4*5\(\sqrt{6\cdot5}\)
=20\(\sqrt{30}\)
b) =\(\sqrt{\left(a^2\right)^2\cdot\left(b^2\right)^2\cdot b}\)
=\(a^2b^2\sqrt{b}\)