K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Chọn C.

Ta có  nên |sin α| = sin α

Tương đương sinα ≥ 0

Điểm cuối của góc lượng giác α nằm trong góc phần tư thứ I hoặc II

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(A = 2{\sin ^2}\alpha  + 5{\cos ^2}\alpha  = 2({\sin ^2}\alpha  + {\cos ^2}\alpha ) + 3{\cos ^2}\alpha \)

Mà \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1;\cos \alpha  =  - \frac{{\sqrt 2 }}{2}.\)

\( \Rightarrow A = 2 + 3.{\left( { - \frac{{\sqrt 2 }}{2}} \right)^2} = 2 + 3.\frac{1}{2} = \frac{7}{2}.\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = \frac{{\sqrt 3 }}{2}\) với \(\alpha  = {60^o}\) và \(\alpha  = {120^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  =  - 1\) với \(\alpha  = {135^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha  =  - \sqrt 3 \) với \(\alpha  = {150^o}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = 0\) với \(\alpha  = {0^o}\) và \(\alpha  = {180^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  = 1\) với \(\alpha  = {45^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha \) không xác định với \(\alpha  = {0^o}\) hoặc \(\alpha  = {180^o}\) 

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

NV
10 tháng 6 2020

\(\left(sina-cosa\right)^2=2\Leftrightarrow sin^2a+cos^2a-2sina.cosa=2\)

\(\Leftrightarrow1-sin2a=2\Rightarrow sin2a=-1\)

\(\left(sina+cosa\right)^2=2\Leftrightarrow sin^2a+cos^2a+2sina.cosa=2\)

\(\Leftrightarrow1+sin2a=2\Rightarrow sin2a=1\)

\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{1}{2}\)

\(\Rightarrow cos\left(a+\frac{\pi}{3}\right)=cosa.cos\frac{\pi}{3}-sina.sin\frac{\pi}{3}\)

\(=\frac{1}{2}.\frac{1}{2}-\left(-\frac{\sqrt{3}}{2}\right).\left(\frac{\sqrt{3}}{2}\right)=...\)

NV
27 tháng 1 2021

\(A=\dfrac{cos^2a-sin^2a}{\dfrac{cos^2a}{sin^2a}-\dfrac{sin^2a}{cos^2a}}-cos^2a=\dfrac{cos^2a.sin^2a\left(cos^2a-sin^2a\right)}{\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)}-cos^2a\)

\(=cos^2a.sin^2a-cos^2a=cos^2a\left(sin^2a-1\right)=-cos^4a\)

\(B=\sqrt{\left(1-cos^2a\right)^2+6cos^2a+3cos^4a}+\sqrt{\left(1-sin^2a\right)^2+6sin^2a+3sin^4a}\)

\(=\sqrt{4cos^4a+4cos^2a+1}+\sqrt{4sin^4a+4sin^2a+1}\)

\(=\sqrt{\left(2cos^2a+1\right)^2}+\sqrt{\left(2sin^2a+1\right)^2}\)

\(=2\left(sin^2a+cos^2a\right)+2=4\)

18 tháng 5 2016

cotα = \(\frac{1}{3}\) \(\Leftrightarrow\frac{cos\alpha}{\sin\alpha}=\frac{1}{3}\Leftrightarrow\sin\alpha=3\cos\alpha\) 

cotα =\(\frac{1}{\tan\alpha}=\frac{1}{3}\Rightarrow\tan\alpha=3\)

T = \(\frac{2016}{\sin^2\alpha-\sin\alpha\cos\alpha-\cos^2\alpha}=\frac{2016}{9\cos^2\alpha-3\cos^2\alpha-\cos^2\alpha}\) \(=\frac{2016}{5\cos^2\alpha}=\frac{2016}{5}\times\frac{1}{\cos^2\alpha}=\frac{2016}{5}\times\left(1+\tan^2\alpha\right)\) \(=\frac{2016}{5}\left(1+9\right)=4032\)

19 tháng 5 2016

cảm ơn bạn nhiều nha ok