Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$
Ta có :
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...............+\dfrac{36}{25.27.29}\)
\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+\dfrac{4}{5.7.9}+.............+\dfrac{4}{25.27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+\dfrac{1}{5.7}-\dfrac{1}{7.9}+...........+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)
\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)
\(B=3-\dfrac{9}{783}< 3\)
\(\Rightarrow B< 3\rightarrowđpcm\)
hôm qua cô giảng cho mình bài này không cần tính đâu
Gọi tổng là A
A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{17.18.19}\)
2A=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{17.18.19}\)
2A=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{17.18}-\dfrac{1}{18.19}\)
2A=\(\dfrac{1}{2}-\dfrac{1}{18.19}\)
A=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{18.19}\right)\)
A=\(\dfrac{1}{2}.\dfrac{18.19-2}{2.18.19}\) < \(\dfrac{1}{4}\)
A=\(\dfrac{18.19-2}{2.2.18.19}\) < \(\dfrac{18.19}{2.2.18.19}\)
\(\Rightarrow\) A<\(\dfrac{1}{4}\)
\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)<\(\dfrac{1}{4}\)
Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)
2.A=2.(\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\))
2. A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+\(\dfrac{2}{3.4.5}\)+...+\(\dfrac{2}{17.18.19}\)
2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+ ...+\(\dfrac{1}{17.18}\)-\(\dfrac{1}{18.19}\)
2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{18.19}\)=\(\dfrac{85}{171}\)
A=\(\dfrac{85}{171}\):2=\(\dfrac{85}{342}\)
Ta cũng có: \(\dfrac{1}{4}\) = \(\dfrac{171}{684}\); \(\dfrac{85}{342}\) = \(\dfrac{170}{684}\)
Vì 170 < 171 ( \(\dfrac{170}{684}\) < \(\dfrac{171}{684}\) )
Vậy \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{17.18.19}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\) Gio thi tu ma lam ko thích viết nữa mệt
bn ơi mk nghĩ bn nên tôn trọng mk một chút! Nếu bn giúp đc thì mk cảm ơn rất nhiều. Còn bn không làm đc thì để cho người khác làm! bn ko thích làm thì mk cx ko mong bn giải nửa chừng như vậy, mk vừa ko hiểu j mà còn bị tự ái khi bn nói như vậy, mong bn hiểu!!mk góp ý thật lòng, ko chỉ đối với mk mà với những bn khác cx zậy!!
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
\(A=\dfrac{1}{1}-\dfrac{1}{20}\)
\(A=\dfrac{20}{20}-\dfrac{1}{20}\)
\(A=\dfrac{19}{20}\)
A = \(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{18.19.20}\)
A = \(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{18.19}\)-\(\dfrac{1}{19.20}\)
A = \(\dfrac{1}{1.2}\)-\(\dfrac{1}{19.20}\)
A = \(\dfrac{1}{2}\)-\(\dfrac{1}{380}\)
A = \(\dfrac{189}{380}\)
(Mình nghĩ là vậy, có gì sai bạn bỏ qua nha )
A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)
A=\(\dfrac{1}{1}-\dfrac{1}{39}\)
A=\(\dfrac{38}{39}\)
còn lại tự làm do mình có việc chút
S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)
\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)
\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)
\(\RightarrowĐPCM\)
a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760