\(\widehat{AOB}\)và \(\widehat{BOC}\)kề nhau, gọi O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

1) Trên cùng nửa mặt phẳng bờ OA, ta có \(\widehat{AOB}< \widehat{AOC}\)nên OB nằm giữa OA, OC, suy ra \(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)

OD là phân giác \(\widehat{AOB}\)nên AD nằm giữa OA, OB, suy ra \(\widehat{AOD}+\widehat{DOB}=\widehat{AOB}\). Ngoài ra, \(\widehat{AOD}=\widehat{DOB}< \widehat{AOB}\)

\(\widehat{AOD}< \widehat{AOB};\widehat{AOB}< \widehat{AOC}\Rightarrow\widehat{AOD}< \widehat{AOC}\).

Trên cùng nửa mặt phẳng bờ OA, ta có \(\widehat{AOD}< \widehat{AOC}\)nên OD nằm giữa OA,OC, suy ra \(\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)

\(\Leftrightarrow\widehat{AOD}+\widehat{DOC}=\widehat{AOB}+\widehat{BOC}\Leftrightarrow\widehat{AOD}+\widehat{DOC}=\widehat{AOD}+\widehat{DOB}+\widehat{BOC}\)

\(\Leftrightarrow\widehat{DOC}=\widehat{DOB}+\widehat{BOC}\Leftrightarrow\) OB nằm giữa OD, OC

2) \(\frac{\widehat{COB}+\widehat{COA}}{2}=\frac{\widehat{COB}+\widehat{AOD}+\widehat{DOB}+\widehat{BOC}}{2}=\frac{2\left(\widehat{COB}+\widehat{DOB}\right)}{2}=\widehat{COD}\)

5 tháng 8 2018

Các bạn giúp mk vs chỉ cần làm phần d thôi còn 3 phần kia mk lm xg r

5 tháng 8 2018

de mak

1 tháng 4 2017

Câu 1:

a) tia Oa nằm giữa hai tia Ob và Ox
b) Tia Oa là tia phân giác của góc xOb
c) Tia Ob là tia phân giác của góc xOc
d) Tia Oc là tia phân giác của góc x'Ob

7 tháng 8 2019

O x y z m n t t'

Tự đánhgóc

Có xOy < xOz (40 < 120)

=> Oy nằm giữa Ox,Oz

=> xOy + yOz = xOz

=> yOz = 40o

Om là p/g xOy

=> mOx = mOy = xOy/2 = 20o

On là p/g xOz 

=> nOx = zOn = xOz/2 = 60o

Có xOm < xOn (20 < 60)

=> Om nằm giữa On và Ox

=> xOm + mOn = xOn

=> mOn = 40o

Có mOy < mOn ( 20<40)

=> Oy nằm giữa Om, On

=> mOy + yOn = mOn

=> yOn = 20o

Vì yOn = mOn = 20o

    Oy nằm giữa Om,On

=> Oy là p/g của mOn

8 tháng 8 2019

chetme làm vội quên câu cuối

c) Ot là tia đối tia Ox

=> tOn và xOn kề bù

=> tOn + nOx = 180o

=> tOn = 120o

Ot' là tia đối Oz 

=> zOn và t'On kề bù

=> zOn + t'On = 180o

=> t'On = 120o

=> t'On = tOn

5 tháng 7 2019

Phân giác của 2 góc kề bù là 1 góc vuông

tOt' = 90 độ

3 tháng 6 2017

\(\text{Ta có : }\) \(\widehat{AOB}+\widehat{BOC}=180^O\)\(\text{ (hai góc kề bù)}\)

\(\text{Mà }\) \(2\widehat{AOB}=5\widehat{BOC}\)

Nên \(\frac{AOB}{5}=\frac{BOC}{2}=\frac{AOB+BOC}{5+2}=\frac{180}{7}=\left(?\right)\)

3 tháng 6 2017

TA CÓ GÓC AOB + GÓC BOC = 180 ĐỘ

\(\frac{AOB}{5}=\frac{BOC}{2}=\frac{AOB+BOC=}{5+2}\frac{180}{7}\)