Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)
Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)
Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)
b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)
Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)
Mấy bài còn lại làm tương tự.
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)
Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)
Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)
b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)
Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)
Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)
a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)
Vì \(\left(2x+\dfrac{1}{4}\right)^4\ge0\)
Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)
Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)
b) \(E=\left(5-3x\right)^2-2013\)
Vì \(\left(5-3x\right)^2\ge0\)
Nên \(\left(5-3x\right)^2-2013\ge-2013\)
Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)
c) \(A=2013+\left|2x-3\right|\)
Vì \(\left|2x-3\right|\ge0\)
Nên \(2013+\left|2x-3\right|\ge2013\)
Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)
Vì \(\left|\dfrac{1}{2}x-3\right|\ge0\)
Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)
Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
Câu 1: tự lm, dễ tek k lm đc thì mất gốc lun đó
Câu 2: link: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Câu 3: Câu hỏi của phuc le - Toán lớp 7 | Học trực tuyến
Câu 4: Goij 3 đơn vị đó lần lượt là a, b, c (a, b, c \(\in N\)*)
Theo đề ta có: \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b+c=560\)
Áp dung t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{2+5+7}=\dfrac{560}{14}=40\)
\(\Rightarrow\left[{}\begin{matrix}a=40\cdot2=80\\b=40\cdot5=200\\c=40\cdot7=280\end{matrix}\right.\)
Vậy 3 đơn vị được chia lại lần lượt là: 80 triệu ; 200 triệu ; 280 triệu
Câu 5: + 6: cứ thay x, y vào mà lm, phần đồ thị hs dễ bn ạ!
1.
\(\left(\dfrac{-1}{8}+\dfrac{-5}{6}\right)\cdot\dfrac{6}{23}\\ =-\dfrac{23}{24}\cdot\dfrac{6}{23}\\ =-\dfrac{6}{24}=-\dfrac{1}{4}\)
2. Xem lại đề nha!
4.
\(x+0,75=-1\dfrac{1}{4}\\ x+\dfrac{3}{4}=-\dfrac{3}{4}\\ x=-\dfrac{3}{4}-\dfrac{3}{4}\\ x=-\dfrac{3}{4}+\left(-\dfrac{3}{4}\right)=-\dfrac{6}{4}=-\dfrac{3}{2}\)
5.
\(\dfrac{x}{28}=-\dfrac{4}{7}\\ \Leftrightarrow7x=-4.28\\ \Rightarrow7x=-112\\ \Rightarrow x=-112:7=-16\)
6.
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{9}\Leftrightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Vậy giá trị của tỉ số \(\dfrac{x}{y}=\dfrac{7}{9}\).
Mn khoanh giúp mk nka !!!
1. C
2. C
3. C