K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

Bài 1:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2007.\dfrac{1}{90}-3\)

\(=19,3\)

Vậy S = 19,3

17 tháng 3 2017

5b)\(S=1+3+3^2+...+3^{2013}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)

\(\Rightarrow3S-S=3^{2014}-1\)

\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)