\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2019

Lời giải:

1.

Xét tam giác $ABH$ và $ACH$ có:
$AH$ chung

$AB=AC$ (do $ABC$ cân tại $A$)

$BH=CH$ (do $H$ là trung điểm của $BC$)

$\Rightarrow \triangle ABH=\triangle ACH$ (c.c.c)

$\Rightarrow \widehat{AHB}=\widehat{AHC}$

Mà $\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^0$

$\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow AH\perp BC$

2. Dễ thấy $ME\parallel DA, MD\parallel AE$

Xét tam giác $ADM$ và $MEA$ có:

$\widehat{DAM}=\widehat{EMA}$ (so le trong)

$\widehat{DMA}=\widehat{EAM}$ (so le trong)

$MA$ chung

$\Rightarrow \triangle ADM=\triangle MEA$ (g.c.g)

$\Rightarrow DM=EA(1), AD=ME$

Do $ABC$ là tam giác vuông cân nên $\widehat{B}=45^0$

Tam giác $BDM$ vuông tại $D$ có góc $\widehat{B}=45^0$ nên là tam giác vuông cân. $\Rightarrow BD=DM(2)$

Từ $(1);(2)\Rightarrow BD=AE$

Mà $AB=AC\Rightarrow AB-BD=AC-AE\Leftrightarrow AD=EC$ (đpcm)

3.

Áp dụng định lý Pitago cho các tam giác vuông:

$MB^2+MC^2=(BD^2+DM^2)+(ME^2+EC^2)$

$=(DM^2+DM^2)+(AD^2+AD^2)=2(DM^2+AD^2)=2AM^2$ (đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 11 2019

Hình vẽ:

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

7 tháng 2 2020

a) Tgiac ABC cân tại A => AB = AC và góc B = góc C

Xét tgiac ABD và ACE có:

+ AB = AC

+ góc B = C

+ BD = CE

=> tgiac ABD = ACE (cgc)

=> AD = AE

b) Xét tgiac BDF và CEG có:

+ BD = CE

+ góc B = góc C

+ góc BFD = CGE = 90 độ

=> tgiac BDF = CEG (ch-gn)

=> đpcm

c) Xét tgiac AFD và AGE có:

+ AD = AE (cmt)

+ góc FAD = GAE (vì tgiac ABD = ACE)

+ góc AFD = AGE = 90 độ

=> tgiac AFD = AGE (ch-gn)

=> góc ADF = AEG

=> góc EDH = DEH (hai góc đối đỉnh)

=> tgiac DEH cân tại H (đpcm)

Câu 2: 

a: Ta có: ΔBDA vuông tại D

mà DM là đường trung tuyến

nên DM=AM=MB=AB/2

Xét ΔAMD có MA=MD

nên ΔMAD cân tại M

mà \(\widehat{MAD}=60^0\)

nên ΔMAD đều

Xét ΔMBD có MB=MD

nên ΔMBD cân tại M

b: Xét ΔAEN có AE=AN

nên ΔAEN cân tại A

mà \(\widehat{EAN}=60^0\)

nên ΔAEN đều

=>EN=AN=AC/2

Xét ΔAEC có

EN là đường trung tuyến

EN=AC/2

DO đo ΔAEC vuông tại E

hay CE\(\perp\)AB

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~