K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2

 

 a) Tứ giác BCB'C' có \(\widehat{BC'C}=\widehat{BB'C}=90^o\) nên nó là tứ giác nội tiếp (2 đỉnh kề nhau nhìn cạnh đối diện dưới 2 góc bằng nhau)

 b) Vì tứ giác BCB'C' nội tiếp nên \(\widehat{AB'C'}=\widehat{ABC}\) (góc ngoài bằng góc trong đối)

 Xét tam giác AB'C' và tam giác ABC có:

 \(\widehat{BAC}\) chung và \(\widehat{AB'C'}=\widehat{ABC}\)

 \(\Rightarrow\Delta AB'C'\sim\Delta ABC\left(g.g\right)\)

c) Theo câu b), ta có \(\widehat{AB'I}=\widehat{ABC}\)

Lại có \(\widehat{ABC}=\widehat{ADC}\) (góc nội tiếp cùng chắn cung AC)

\(\Rightarrow\widehat{AB'I}=\widehat{ADC}\) \(\Rightarrow\) Tứ giác B'IDC nội tiếp (góc ngoài bằng góc trong đối)

a: Xét tứ giác BC'B'C có \(\widehat{BC'C}=\widehat{BB'C}=90^0\)

nên BC'B'C là tứ giác nội tiếp

b: Ta có: BC'B'C là tứ giác nội tiếp

=>\(\widehat{BC'B'}+\widehat{BCB'}=180^0\)

mà \(\widehat{BC'B'}+\widehat{AC'B'}=180^0\)

nên \(\widehat{AC'B'}=\widehat{ACB}\)

Xét ΔAC'B' và ΔACB có

\(\widehat{AC'B'}=\widehat{ACB}\)

\(\widehat{CAB}\) chung

Do đó: ΔAC'B'~ΔACB

a: Xét tứ giác BCB'C' có 

\(\widehat{BC'C}=\widehat{BB'C}=90^0\)

Do đó: BCB'C' là tứ giác nội tiếp

 

24 tháng 2 2022

Ta có:

BB' là đường cao (gt). \(\Rightarrow BB'\perp AC.\)

CC' là đường cao (gt). \(\Rightarrow CC'\perp AB.\)

Xét tứ giác BCB'C':

\(\widehat{BC'C}=\widehat{BB'C}\left(CC'\perp AB;BB'\perp AC\right).\)Mà 2 đỉnh này ở vị trí kề nhau, cùng nhìn cạnh BC.\(\Rightarrow\) Tứ giác BCB'C' nội tiếp (dhnb).
1 tháng 5 2021

Bạn nào lướt qua thì giúp mình phần c với nha :v hơi bí phần c

1 tháng 5 2021

chứng minh cho DE sog sog vs A'C = cách cm 2 góc SLT ∠EDC=∠DCA'

đến đó tự lm i