Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- CM : AM < (AB+BC):2
Tren tia AM lay D / M la trung diem AD
cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD
ta co : AD<AC+CD ( bdt trong tam giac ACD)
ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)
nen 2AM< AC+AB
--> AM < ( AC+AB):2
- cm ( AB+AC-BC):2 < AM
ta co : AB < AM+BM ( bdt trong tam giac ABM )
AC< AM+MC ( bdt trong tam giac AMC )
==> AB+AC < AM+BM+AM+MC
----> A
Lấy D thuộc tia đối của tia MA sao cho: MA =MD
Chứn minh MAB=MDC (c.g.c)
suy ra AB=CD ( Hai cạnh tương ứng)
tam giác ACD có: AD < AC +CD (Bất đẳng thức tam giác)
suy ra AD< AC+ AB
mà AD=2AM
suy ra 2AM< AC+AB
suy ra AM < (AB+ AC)/2 (đpcm)
A B C M D
Trên tia đối của MA lấy điểm D sao cho MA = MD
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (cách vẽ)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
\(\Rightarrow AB=CD\)(2 cạnh tương ứng)
Xét \(\Delta ACD\) có: \(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)
Xét \(\Delta MAB\)có: \(AM>AB-BM\)
Xét \(\Delta MAC\)có: \(AM>AC-MC\)
\(\Rightarrow AM+AM>AB-BM+AC-MC\)
\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)
\(\Rightarrow2AM>AB+AC-BC\)
\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)
CM : AM < (AB+BC):2 Tren tia AM lay D / M la trung diem AD cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD ta co : AD AM < ( AC+AB):2 - cm ( AB+AC-BC):2 < AM ta co : AB < AM+BM ( bdt trong tam giac ABM ) AC< AM+MC ( bdt trong tam giac AMC ) ==> AB+AC < AM+BM+AM+MC
:34
Bạn giải chi tiết được không