K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

có thể mình biết la làm cơ mà dài lém

9 tháng 8 2016

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

11 tháng 8 2016

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

Tổng số đo các góc của hình tam giác luôn bằng 360 độ

Số đo của góc A là:360:(3+5+7)x3=72 độ

Số đo của góc B là:72:3x5=120 độ

Số đo của góc C là:360-120-72=168 độ

20 tháng 11 2016

Góc A = 72o

Góc B = 120o

Góc C = 168o

22 tháng 12 2021

A=36

B=60

C=84

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

Tam giác $ABC$ vuông tại $C$ nên $\widehat{C}=90^0$.

$\widehat{A}+\widehat{B}=180^0-\widehat{C}=180^0-90^0=90^0$

Vì $\widehat{A}, \widehat{B}$ tỉ lệ nghịch với $\frac{1}{2}, \frac{2}{5}$ nên:

$\widehat{A}.\frac{1}{2}=\widehat{B}.\frac{2}{5}$

$\Rightarrow \widehat{A}=\widehat{B}.\frac{2}{5}:\frac{1}{2}=\widehat{B}.\frac{4}{5}$

$\Rightarrow \widehat{A}+\widehat{B}=\frac{9}{5}\widehat{B}$

$\Rightarrow 90^0=\frac{9}{5}\widehat{B}$

$\Rightarrow \widehat{B}=50^0$

$\widehat{A}=90^0-\widehat{B}=90^0-50^0=40^0$

 

15 tháng 7 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

c) Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)

Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)

nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)

mà \(\widehat{B}+\widehat{C}=140^0\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)

Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)

mà cạnh đối diện với \(\widehat{A}\) là cạnh BC

cạnh đối diện với \(\widehat{B}\) là cạnh AC

và cạnh đối diện với \(\widehat{C}\) là cạnh AB

nên BC<AC<AB