\(x^2-7x-6=0\) có 2 nghiệm \(x_1,x_2\) ( không giải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-6\end{matrix}\right.\)

\(E=2x_1^2x_2+2x_1x_2^2\\ =2x_1x_2\left(x_1+x_2\right)\\ =2.\left(-6\right).7\\ =-84\)

13 tháng 4 2018

\(x^2-mx-2=0\)

có \(\Delta=\left(-m\right)^2-4.\left(-2\right)=m^2+8>0\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-2\end{cases}}\)

theo bài ra \(2x_1-x^2_1-x_2^2+2x_2\)

\(=2\left(x_1+x_2\right)-\left(x^2_1+x_2^2\right)\)

\(=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]\)

\(=2m-\left[m^2-2.\left(-2\right)\right]\)

\(=2m-\left(m^2+4\right)\)

\(=2m-m^2-4\)

\(=-\left(m^2-2m+4\right)\)

\(=-\left[\left(m-1\right)^2+3\right]\)

13 tháng 4 2018

Điều kiện để phương trình có 2 nghiệm phân biệt thì tự làm nha.

Áp dụng vi-et ta được

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)

\(\Rightarrow P=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)

\(=2m-\left(m^2+4\right)=-3-\left(m-1\right)^2\le-3\)

NV
22 tháng 4 2019

\(\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(P=\frac{2x_1x_2+3}{x_1^2+2x_1x_2+x_2^2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}=\frac{2m+1}{m^2+2}\)

c/

\(P=\frac{2m+1}{m^2+2}\Leftrightarrow Pm^2+2P=2m+1\)

\(\Leftrightarrow Pm^2-2m+2P-1=0\) (1)

Do pt có nghiệm với mọi m nên (1) phải có nghiệm m với tham số P

\(\Rightarrow\Delta'=1-P\left(2P-1\right)\ge0\Leftrightarrow-2P^2+P+1\ge0\)

\(\Rightarrow-\frac{1}{2}\le P\le1\Rightarrow\left\{{}\begin{matrix}P_{mim}=-\frac{1}{2}\\P_{max}=1\end{matrix}\right.\)

3 tháng 4 2019

a/ C1: Do ac=2.(-2)<0 => pt luôn có 2 ng phân biệt 

    C2: \(\Delta=\left(-3m\right)^2-4.2.\left(-2\right)\)

             \(=9m^2+16\ge16\)

=> pt luôn có 2 ng phân biệt

b/ Có \(\hept{\begin{cases}x_1+x_2=\frac{3m}{2}\\x_1.x_2=-1\end{cases}}\)  (vi-et)

\(\Rightarrow x+x=\left(x+x\right)^2-2xx\)

\(=\left(\frac{3m}{2}\right)^2-2.\left(-1\right)\)

\(=\frac{9m^2}{4}+2\ge2\)

Vậy min=2 <=> m=0

c\(\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{x^3_1+x^3_2}{x^3_1x^3_2}\)

                       =   \(\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1^3x_2^3}\)

                      \(=\frac{\left(\frac{3m}{2}\right)^2-3\left(-1\right)\left(\frac{3m}{2}\right)}{\left(-1\right)^3}\)

                   \(=\frac{\frac{9m^2}{4}+\frac{9m}{2}}{-1}\)

                 \(=\frac{\frac{9m^2}{4}+\frac{18m}{4}}{-1}\)

                   \(=\frac{9m^2+18m}{-4}\)

10 tháng 5 2017

Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)

Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt

Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)

Thay giá trị của \(x_1+x_2\)\(x_1.x_2\) vào biểu thức A ta được :

\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)

\(A=\dfrac{3m}{m^2+m+1}\)

Cm: \(3m\le m^2+m+1\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)

Do đó \(3m\le m^2+m+1\) khi đó ta được:

\(A=\dfrac{3m}{m+m+1}\le1\)

Vậy với GTLN của A = 1 khi và chỉ khi m=1

10 tháng 5 2017

mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1

NV
15 tháng 5 2020

c/

\(\left|x_1\right|+\left|x_2\right|=3\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=9\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)

\(\Leftrightarrow4\left(m+1\right)^2-2\left(m^2-3m\right)+2\left|m^2-3m\right|=9\)

- Với \(m^2-3m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge3\\-\frac{1}{5}< m\le0\end{matrix}\right.\)

\(\Rightarrow4\left(m+1\right)^2-2\left(m^2-3m\right)+2\left(m^2-3m\right)=9\)

\(\Leftrightarrow4\left(m+1\right)^2=9\Rightarrow\left(m+1\right)^2=\frac{9}{4}\)

\(\Rightarrow\left[{}\begin{matrix}m+1=\frac{3}{2}\\m+1=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{3}\left(l\right)\\m=-\frac{5}{2}< -\frac{1}{5}\left(l\right)\end{matrix}\right.\)

- Với \(m^2-3m< 0\Rightarrow0< m< 3\)

\(\Rightarrow4\left(m+1\right)^2-2\left(m^2-3m\right)-2\left(m^2-3m\right)=9\)

\(\Leftrightarrow20m-5=0\Rightarrow m=\frac{1}{4}\) (thỏa mãn)

NV
15 tháng 5 2020

\(\Delta'=\left(m+1\right)^2-m^2+3m=5m+1>0\Rightarrow m>-\frac{1}{5}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\2x_1-3x_2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+3x_2=6\left(m+1\right)\\2x_1-3x_2=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{6m+14}{5}\\x_2=\frac{4m-4}{5}\end{matrix}\right.\)

\(x_1x_2=m^2-3m\)

\(\Leftrightarrow\left(\frac{6m+14}{5}\right)\left(\frac{4m-4}{5}\right)=m^2-3m\)

Bạn tự khai triển và giải pt bậc 2 này

b/ \(\left|x_1-x_2\right|=4\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2-3m\right)=16\)

\(\Leftrightarrow5m+1=4\)

NV
2 tháng 7 2020

\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)

\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)

\(\Leftrightarrow\left(2m+3\right)^2-4\left(m^2+2m+2\right)=2m+3+x_1\)

\(\Leftrightarrow4m+1=2m+3+x_1\)

\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)

\(x_1x_2=m^2+2m+2\)

\(\Rightarrow5\left(2m-2\right)=m^2+2m+2\)

\(\Rightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)